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As we saw in Chapter 10, the file system provides the mechanism for on-line
storage and access to file contents, including data and programs. The file system
resides permanently on secondary storage, which is designed to hold a large
amount of data permanently. This chapter is primarily concerned with issues
surrounding file storage and access on the most common secondary-storage
medium, the disk. We explore ways to structure file use, to aliocate disk space,
to recover freed space, to frack the locations of data, and to interface other
parts of the operating system to secondary storage. Performance issues are
considered throughout the chapter.

Fle-Systerm Struciere

Disks provide the bulk of secondary storage on which a file system is
maintained. They have two characteristics that make them a convenient
medium for storing multiple files:

{ A disk can be rewritten in place; it is possible to read a block from the
disk, modify the block, and write it back into the same place.

A disk can access directly any given block of information it contains.
Thus, it is simple to access any file either sequentially or randomly, and
switching from one file to another requires only moving the read -write
heads and waiting for the disk to rotate.

We discuss disk structure in great detail in Chapter 12.

Rather than transferring a byte at a time, to improve 1/0 efficiency, 1/0
transfers between memory and disk are performed in units of blocks. Each
block has one or more sectors. Depending on the disk drive, sectors vary from
32 bytes to 4,096 bytes; usually, they are.512 bytes.

To provide efficient and convenient access to the disk, the operating system
imposes one or more file systems to allow the data to be stored, located, and
retrieved easily. A file system poses two quite different design problems. The
first problem is defining how the file system should look to the user. This task
involves defining a file and its attributes, the operations allowed on a file, and
the directory structure for organizing files. The second problem is creating
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algorithms and data structures to map the logical file system onto the physical
secondary-storage devices.

The file system itself is generally composed of many different levels. The
structure shown in Figure 11.1 is an example of a layered design. Each level in
the design uses the features of lower levels to create new features for use by
higher levels. '

The lowest level, the /0 control, consists of device drivers and interrupt
handlers to transfer information between the main memory and the disk
system. A device driver can be thought of as a translator. Its input consists of
high-level commands such as “retrieve block 123.” Its output consists of low-
level, hardware-specific instructions that are used by the hardware controller,
which interfaces the 170 device to the rest of the system. The device driver
usually writes specific bit patterns to special locations in the 1/0 controller’s
memory to tell the controller which device location to act on and what actions
to take. The details of device drivers and the I/0 infrastructure are covered in
Chapter 13.

The basic file system needs only to issue generic commands to the
appropriate device driver to read and write physical blocks on the disk. Each
physical block is identified by its numeric disk address (for example, drive 1,
cylinder 73, track 2, sector 10).

The file-organization module knows about files'and their logical blocks,
as well as physical blocks. By knowing the type of file allocation used and
the location of the file, the file-organization module can translate logical block
addresses to physical block addresses for the basic file system to transfer.
Each file’s logical blocks are numbered from 0 (or 1) through N. Since the
physical blocks containing the data usually do not match the logical numbers,
a translation is needed to locate each block. The file-organization module also
includes the free-space manager, which tracks unallocated blocks and provides
these blocks to the file-organization module when requested.

application programs

logical file system

file-organization module

d

basic file system

d

10O control

b

devices

Figure 11.1 Layered file system,
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Finally, the logical file system manages metadata information. Metadata
includes all of the file-system structure except the actual data (or contents of the
files). The logical file system manages the directory structure to provide the file-
organization module with the information the latter needs, given a symbolic
file name. It maintains file structure via file-control blocks. A file-control block
(FCB) contains information about the file, including ownership, permissions,
and location of the file contents. The logical file system is also responsible for
protection and security, as was discussed in Chapter 10 and will be further
discussed in Chapter 17.

When a layered structure is used for file-system implementation, duplica-
tion of code is minimized. The I/0 control and sometimes the basic file-system
code can be used by multiple file systems. Each file system can then have its
own logical file system and file-organization modules.

Many file systems are in use today. Most operating systems support
more than one. For example, most CD-ROMs are written in the ISO 9660
format, a standard format agreed on by CD-ROM manufacturers. In addition
to removable-media file systems, each operating system has one disk-based
file system (or more). UNIX uses the UNIX file system (UFS), which is based on
the Berkeley Fast File System (FFS). Windows NT, 2000, and XP support disk
file-system formats of FAT, FAT32, and NTFS (or Windows NT.File System), as
well as CD-ROM, DVD, and floppy-disk file-system formats. Although Linux
supports over forty different file systems, the standard Linux file system is
known as the extended file system, with the most common version being ext2
and ext3. There are also distributed file systems in which a file system on a
server is mounted by one or more clients.

File-System Implementation

As was described in Section 10.1.2, operating systems implement open() and
close() systems calis for processes to request access to file contents. In this
section, we delve into the structures and operations used to implement file-
system operations.

11.2.1 Overview

Several on-disk and in-memory structures are used to implement a file system.
These structures vary depending on the operating systemn and the file system,
but some general principles apply.

On disk, the file system may contain information about how to boot an
operating system stored there, the total number of blocks, the number and
location of free blocks, the directory structure, and individual files. Many of
these structures are detailed throughout the remainder of this chapter; here we
describe them briefly:

* A boot control block (per volume) can contain information needed by the
system to boot an operating system from that volume. If the disk does not
contain an operating system, this block can be empty. It is typically the
first block of a volume. In UFS, it is called the boot block; in NTFS, it is the
partition boot sector.
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A volume contro! block (per volume) contains volume (or partition)
details, such as the number of blocks in the partition, size of the blocks, free-
block count and free-block pointers, and free FCB count and FCB pointers.
In UFS, this is called a superblock; in NTFS, it is stored in the master file
table.

A directory structure per file system is used to organize the files. In UFS,
this includes file names and associated inode numbers. In NTFS it is stored
in the master file table.

A per-file FCB contains many details about the file, including file permis-
sions, ownership, size, and location of the data blocks. In UFS, this is called
the inode. In NTFS, this information is actually stored within the master
file table, which uses a relational database structure, with a row per file.

The in-memory information is used for both file-system management and

performance improvement via caching. The data are loaded at mount time and
discarded at dismount. The structures may include the ones described below:

#

An in-memory mouint table contains information about each mounted
volume.

An in-memory directory-structure cache holds the directory information
of recently accessed directories. (For directories at which volumes are
mounted, it can contain a pointer to the volume table.)

The system-wide open-file table contains a copy of the FCB of each open
file, as well as other information.

The per-process open-file table contains a pointer to the appropriate entry
in the system-wide open-file table, as well as other information.

To create a new file, an application program calls the logical file system. -

The logical file system knows the format of the directory structures. To create a
new file, it allocates a new FCB, (Alternatively, if the file-system implementation
creates all FCBs at file-system creation time, an FCB is allocated from the set
of free FCBs.) The system then reads the appropriate directory into memory,
updates it with the new file name and FCB, and writes it back to the disk. A
typical FCB is shown in Figure 11.2. :

file permissions

file dates (create, access, write)

file ownar, group, AGCL

file size

file data btocks or pointers to file data blocks

Figure 11.2 A typical file-controi block.
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Some operating systems, including UNIX, treat a directory’exactly the same’
as a file—one with a type field indicating that it is a directory. Other operating
systems, including Windows NT, implement separate system calls for files and
directories and treat directories as entities separate from files. Whatever the
larger structural issues, the logical file system can call the file-ovganization
module to map the directory 1/0 into disk-block numbers, which are passed
on to the basic file system and 1/0 control system. 1

- Now that a file has been created, it can be used for 1/0. First, though, it must
be opened. The open() call passes a file name to the file system. The open()
system call first searches the system-wide open-file table to see if the file is
already in use by another process. If it is, a per-process open-file table entry
is created pointing to the existing system-wide open-file table. This algorithm
can save substantial overhead. When a file is opened, the directory structure
is searched for the given file name. Parts of the directory structure are usually
cached in memory to speed directory operations. Once the file is found, the
FCB is copied into a system-wide open-file table in memory. This table not only
stores the FCB but also tracks the number of processes that have the file open.

Next, an entry is made in the per-process open-file table, with a pointer
to the entry in the system-wide open-file table and some other fields. These
other field= can include a pointer to the current location in the file (for th= next
read() or write() operation} and the access mode in which the file is open.
The open() call returns a pointer to the appropriate entry in the per-process

mfm

. _ direciory structure
open (file name) 7
directory structure : fite-control biock -
user space - kemet memory seconday storage
' (a)
read (index)
user space secondary stordge

Figure 11.3  In-memory file-system structures. (a) File open. (b} File read.
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file-system table. All file operations are then performed via this pointer. The
file name may not be part of the open-file table, as the system has no use for
" it once the appropriate FCB is located on disk. It could be cached, though, to
save time on subsequent opens of the same file. The name given to the entry
varies. UNIX systems refer to it as a file descriptor; Windows refers toitasa -
file handle. Consequently, as long as the file is not closed, all file operations
are done on the open-file table.

When a process closes the file, the per-process table entry is removed, and
the system-wide entry’s open count is decremented. When all users that have
opened the file close it, any updated metadata is copied back to the disk-based
directory structure, and the system-wide open-file table entry is removed.

Some systems complicate this scheme further by using the file system as an
interface to other system aspects, such as networking. For example, in UFS, the
system-wide open-file table holds the inodes and other information for files
and directories. It also holds similar information for network connections and
devices. In this way, one mechanism can be used for multiple purposes.

The caching aspects of file-system structures should not be overlooked.
Most systems keep all information about an open file, except for its actual data
blocks, in memory. The BSD UNIX system is typical in its use of caches wherever
disk I/0 can be saved. Its average cache hit rate of 85 percent shows that these
techniques are well worth implementing. The BSD UNIX system is described
fully in Appendix A. -

“The operating structures of a file-system implementation are summarized -
in Figure 11.3. '

11.2.2 Partitions and Mounting

The layout of a disk can have many variations, depending on the operating
system. A disk can be sliced into multiple partitions, or a volume can span
muitiple partitions on multiple disks. The former layout is discussed here,
while the latter, which is more appropriately considered a form of RAID, is
covered in Section 12.7. ‘

Each partition can be either “raw,” containing no file system, or “cooked,”
containing a file system. Raw disk is used where no file system is appropriate.
UNIX swap space can use a raw partition, for example, as it uses its own format
on disk and does not use a file system. Likewise, some databases use raw disk
and format the data to suit their needs. Raw disk can also hold information
needed by disk RAID systems, such as bit maps indicating which blocks are
mirrored and which have changed and need to be mirrored. Similarly, raw disk
can contain a miniature database holding RAID configuration information, such
as which disks are members of each RAID set. Raw disk use is further discussed
in Section 12.5.1.

Boot information can be stored in a separate partition. Again, it has its
own format, because at boot time the system does not have file-system device
drivers loaded and therefore cannot interpret the file-system format. Rather,
boot information is usually a sequential series of blocks, loaded as an image
into memory. Execution of the image starts at a predefined location, such
as the first byte. This boot image can contain more than the instructions for
how to boot a specific operating system. For instance, PCs and other systems
can be dual-booted. Multiple operating systems can be instailed on such a
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system. How does the system know which one to boot? A boot loader that
understands multiple file systems and multiple operating systems can occupy
the boot space. Once loaded, it can boot one of the operating systems available
on the disk. The disk can have multiple partitions, each containing a different
type of file system and a different operating system.

The root partition, which contains the operating-system kernel and some-
times other system files, is mounted at boot time. Other volumes can be
automatically mounted at boot or manually mounted later, depending on the
operating system. As part of a successful mount operation, the operating sys-
tem verifies that the device contains a valid file system. It does so by asking the
device driver to read the device directory and verifying that the directory has
the expected format. If the format is invalid, the partition must have its consis-
tency checked and possibly corrected, either with or without user intervention.
Finally, the operating system notes in its in-memory mount table structure that
a file system is mounted, along with the type of the file system. The details
of this function depend on the operating system. Microsoft Windows-based
systems mount each volume in a separate name space, denoted by a letter
and a colon. To record that a file system is mounted at F:, for example, the
operating system places a pointer to the file system in a field of the device
structure corresponding to F:. When a process specifies the driver letter, the
operating system finds the appropriate file-system pointer and traverses the
directory structures on that device to find the specified file or directory. Later
ve rsions of Windows can mount a file system at any point within the existing
directory structure. '

On UNIX, file systems can be mounted at any directory. Mounting is
implemented by setting a flag in the in-memory copy of the inode for that
directory. The flag indicates that the directory is a mount point. A field then
points to an entry in the mount table, indicating which device is mounted there.
The mount table entry contains a pointer to the superblock of the file system on
that device. This scheme enables the operating system to traverse its directory
structure, switching among file systems of varying types, seamlessly.

11.2.3 Virtual File Systems

The previous section makes it clear that modern operating systems must
concurrently support multiple types of file systems. But how does an operating
system allow multiple types of file systems to be integrated into a directory
structure? And how can users seamlessly move between file-system types
as they navigate the file-system space? We now discuss some of these
implementation details.

An obvious but suboptimal method of implementing multiple types of file
systems is to write directory and file routines for each type. Instéad, however,
most operating systems, including UNIX, use object-oriented techniques to
simplify, organize, and modularize the implementation. The use of these
methods allows very dissimilar file-system types to be implemented within
the same structure, including network file systems, such as NFS. Users can
access files that are contained within multiple file systems on the local disk or
even on file systems available across the network.

Data structures and procedures are used to isclate the basic system-
cafl functionality from the implementation details. Thus, the Fle-system
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Figure 11.4 Schematic view of a virtual file system.

implementation consists of three major layers, as depicted schematically in
Figure 11.4. The first layer is the file-system interface, based on the open(),
read(), write(), and close() calls and on file descriptors.

The second layer is called the virtual file system (VFS) layer; it serves two
important functions:

- It separates file-system-generic operations from their implementation
by defining a clean VFS interface. Several implementations for the VFS
interface may coexist on the same machine, allowing transparent access
to different types of file systems mounted locally.

The VFS provides a mechanism for uniquely representing a file throughout
a network. The VES is based on a file-representation structure, called a
vnode, that contains a numerical designator for a network-wide unique
file. (UNIX inodes are unique within only a single file system.) This
network-wide uniqueness is required for support of network file systems.
The kernel maintains one vnode structure for each active node (file or
directory).

Thus, the VFS distinguishes local files from remote ones, and local files are
further distinguished according to their file-system types.

The VFS activates file-system-specific operations to handle local requests
according to their file-system types and even calls the NFS protocol procedures
for remote requests. File handles are constructed from the relevant vnodes
and are passed as arguments to these procedures. The layer implementing
the file-system type or the remote-file-system protacol is the third layer of the
architecture.
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Let’s briefly examine the VFS architecture in Linux. The four main object
types defined by the Linux VFS are:
» The inode object, which represents an individual file
* The file object, which represents an open file
» The superblock object, which represents an entire file system
¢ The dentry object, which represents an individual directory entry

For each of these four object types, the VFS defines a set of operations that
must be implemented. Every object of one of these types contains a pointer to
a function table. The function table lists the addresses of the actual functions
that implement the defined operations for that particular object. For example,
an abbreviated API for some of the operations for the file object include:

+« int open(. . .)—Opena file.

+ gsize t read(. . .)}—Read from a file.
s ggize t write{. . .)—Writeto a file.
= int mmap(. . .)—Memory-map a file.

An implementation of the file object for a specific file type is required to imple-
ment each function specified in the definition of the file object. (The complete
definition of the file object is spacified in the struct file operations, which
is located in the file /usr/include/Iinux/fs.h.)

Thus, the VFS software layer can perform an operation on one of these
objects by calling the appropriate function from the object’s function table,
without having to know in advance exactly what kind of object it is dealing
with. The VFS does not know, or care, whether an inode represents a disk file,
a directory file, or a remote file. The appropriate function for that file’s read ()
operation will always be at the same place in its function table, and the “5
software layer will call that function without caring how the data are actually
read.

o . - . W T A
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The selection of directory-allocation and directory-management algorithms
significantly affects the efficiency, performance, and reliability of the file
system. In this section, we discuss the trade-offs involved in choosing one
of these algorithms.

11.3.1 Linear List

The simplest method of implementing a directory is to use a linear list of file
names with pointers to the data blocks. This method is simple to program
but time-consuming to execute. To create a new file, we must first search the
directory to be sure that no existing file has the same name. Then, we add a
new eniry at the end of the directory. To delete a file, we search the directory
for the named file, then release the space alloceted to i 7o reuse the direcior

endry, v can do one of severar vngs. Wo car mia b e enitiv as anose oy
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assigning it a special name, such as an all-blank name, or with a used—unused
bit in each entry), or we can attach it to a hist of free directory entries. A third
alternative is to copy the last entry in the directory into the freed location and
to decrease the length of the directory. A linked list can also be used to decrease
the time required to delete a file.

The real disadvantage of a linear list of directory entries is that finding a
file requires a linear search. Directory information is used frequently, and users
will notice if access to it is slow. In faci, many operating systems implement a
software cache to store the most recently used directory information. A cache
hit avoids the need to constantly reread the information from disk. A sorted
list allows a binary search and decreases the average search time. However, the
requirement that the list be kept sorted may complicate creating and deleting
files, since we may have to move substantial amounts of directory information
to maintain a sorted directory. A more sophisticated tree data structure, such
as a B-tree, might help here. An advantage of the sorted list is that a sorted
directory listing can be produced without a separate sort step.

11.3.2 Hash Table

Another data structure used for a file directory is a hash table. With this
method, a linear list stores the directory entries, but a hash data structure is
also used. The hash table takes a value computed from the file name and returns
a pointer to the file name in the linear list. Therefore, it can greatly decrease the
directory search time. Insertion and deletion are also fairly straightforward
although some provision must be made for collisions—situations in which
two file names hash to the same location.

The major difficulties with a hash table are its generally fixed size and the
dependence of the hash function on that size. For example, assume that we
make a linear-probing hash table that holds 64 entries. The hash function
converts file names into integers from 0 to 63, for instance, by using the
remainder of a division by 64. If we later try to create a 65th file, we must
enlarge the directory hash-table—say, to 128 entries. As a resuit, we need
a new hash function that must map file names to the rarige 0 to 127, and we
must reorganize the existing directory entries to reflect their new hash-function
values.

Alternatively, a chained-overflow hash tabie can be used. Each hash entry
can be a linked list instead of an individual value, and we can resolve collisions
by adding the new entry to the linked list. Lookups may be somewhat slorved,
because searching for a name might require stepping through a linked list of
colliding table entries. Still, this method is likely to be much faster than a linear
search through the entire directory.

et BAIRIONE

The direct-access nature of disks allows us flexibility in the implementation of
files. In almost every case, many files are stored on the same disk. The main
problem is how to allocate space to these files so that disk space is utilized
effectivelv and files can be accessed quickly. Three major methods of allocating
disk space are in wide use: contiguous, linked, and indexed. Fac’. methad has
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advantages and disadvantages. Some systems; {such as Data General’s RDOS
sor its Nova line of computers) support all three. More commonly, a system
uses one method for all files within a file system type.

. 1.4.1 Contiguous Allocation

Contiguous allocation requires that each file occupy a set of contiguous blocks
on the disk. Disk addresses define a linear ordering on the disk. With this
ordering, assuming that only one job is accessing the disk, accessing block b +
1 after block b normally requires no head movement. When head movement
is needed (from the last sector of one cylinder to the first sector of the next
cylinder), the head need only move from one track to the next. Thus, the number
of djsk seeks required for accessing contiguously allocated files is minimal, as
is séek time when a seek is finally needed. The 1BM VM/CMS operating system
uses contiguous allocation because it provides such good performance.

Contiguous allocation of a file is defined by the disk address and length (in
block units) of the first block. If the file is n blocks long and starts at location
b, then it occupies blocks b, b + 1, b+2,..,b+n— 1. The directory entry for
each file indicates the address of the starting block and the length of the area
allocated for this file (Figure 11.5).

Accessing a file that has been allocated contiguously is easy. For sequential
access, the file system remembers the disk address of the last block referenced
and, when necessary, reads the next block. For direct access to block i of a
file that starts at block b, we can immediately access block b + i. Thus, both
sequential and direct access can be supported by contiguous allocation.

Contiguous allocation has some problems, however. One difficulty is
finding space for a new file. The system chosen to manage free space determines
how this task is accomplished; these management systems are discussed in

directory

file start iength
count 0 2

tr 14 3
mail 19 6
list 28 4
B 6 2

Figure 11.5 Contigucus aflocation of disk space.
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Section 11.5. Any management system can be used, but some are slower than
others.

The contiguous-allocation problem can be seen as a particular application
of the general dynamic storage-allocation problem discussed in Section 8.3,
which involves how to satisfy a request of size n from a list of free holes. First
fit and best fit are the most common strategies used to select a free hole from
the set of available holes. Simulations have shown that both first fit and best fit
are more efficient than worst fit in terms of both time and storage utilization.
Neither first fit nor best fit is clearly best in terms of storage utilization, but
first fit is generally faster.

All these algorithms suffer from the problem of external fragmentation.
As files are allocated and deleted, the free disk space is broken into little pieces.
External fragmentation exists whenever free space is broken into chunks. It
becomes a problem when the largest contiguous chunk is insufficient for a
request; storage is fragmented into a number of holes, no one of which is large
enough to store the data. Depending on the total amount of disk storage and the
average file size, external fragmentation may be a minor or a major problem.

Some older FC systems used contiguous allocation on floppy disks. To
prevent loss of significant amounts of disk space to external fragmentation,
the user had to run a repacking routine that copied the entire file system
onto another floppy disk or onto a tape. The original floppy disk was then
freed completely, creating one large contiguous free space. The routine then
copied the files back onto the floppy disk by allocating contiguous space
from this one large hole. This scheme effectively compacts all free space into
one contiguous space, solving the fragmentation problem. The cost of this
compaction is time. The time cost is particularly severe for large hard disks that
use contiguous allocation, where compacting all the space may take hours and
may be necessary on a weekly basis. Some systems require that this function
be done off-line, with the file system unmounted. During this down time,
normai system operation generally cannot be permitted; so such compaction is
avoided at all costs on production machines. Most modern systems that need
defragmentation can perform it on-line during normal system operations, but
the performance penalty can be substantial.

Another problem with contiguous allocation is determining how much
space is needed for a file. When the file is created, the total amount of space
it will need must be found and allocated. How does the creator (program or
person) know the size of the file to be created? In some cases, this determination
may be fairly simple (copying an existing file, for example); in general, however,
the size of an output file may be difficult to estimate.

If we allocate too little space to a file, we may find that the file cannot
be extended. Especially with a best-fit allocation strategy, the space on both
sides of the file may be in use. Hence, we cannot make the file larger in place.
Two possibilities then exist. First, the user program can be terminated, with
an appropriate error message. The user must then alloc2te more space and
run the program again. These repeated runs may be costly. To prevent them,
the user will normally overestimate the amount of space needed, resulting in
-considerable wasted space. The other possibility is to find a larger hole, copy
the contents of the file to the new space, and release the previous space. This
serics of actions can be repeated as long as space exists, althnugh it can be time
consuming. However, the user need never be informed explhicitly about what
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is happening; the system continues despite the problem, aithough more and
more slowly.

Even if the total amount of space needed for a file is known in advance,
preallocation may be inefficient. A file that will grow slowly over a long period
{months or years) must be allocated enough space for its final size, even though
much of that space will be unused for a long time. The file therefore has a large
amount of internal fragmentation.

To minimize these drawbacks, some operating systems use a modified
contiguous-allocation scheme. Here, a contiguous chunk of space is allocated
initially; and then, if that amount proves not to be large enough, another chunk
of contiguous space, known as an extent, is added. The location of a file’s blocks
is then recorded as a location and a block count, plus a link to the first block
of the next extent. On some systems, the owner of the file can set the extent
size, but this setting results in inefficiencies if the owner is incorrect. Internal
fragmentation can still be a problem if the extents are too large, and external
fragmentation can become a problem as extents of varying sizes are allocated
and deallocated. The commercial Veritas file system uses extents to optimize
performance. It is a high-performance replacement for the standard UNIX UFS.

11.4.2 Linked Allocation

Linked allocation solves all problems of contiguous allocation. With linked
allocation, each file is a linked list of disk blocks; the disk blocks may be
scattered anywhere on the disk. The directory contains a pointer to the first
and last blocks of the file. For example, a file of five blocks might start at block
9 and continue at block 16, then block 1, then block 10, and finally biock 25
(Figure 11.6). Each block contains a peinter to the next block. These pointers
are not made available to the user. Thus, if each block is 512 bytes in size, and

directory

file start end
jeep 9 25
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Figure 11.6 Linked aliocaton of disk space. ‘
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a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508
bytes.

To create a new file, we simply create a new entry in the directory. With
linked allocation, each directory entry has a pointer to the first disk block of the
file. This pointer is initialized to nil (the end-of-list pointer value) to signify an
empty file. The size field is also set to 0. A write to the file causes the free-space
management system to find a free block, and this new block is written to
and is linked to the end of the file. To read a file, we simply read blocks by
following the pointers from block to block. There is no external fragmentation
with linked allocation, and any free block on the free-space list can be used to
satisfy a request. The size of a file need not be declared when that file is created.
A file can continue to grow as long as free blocks are available. Consequently,
it is never necessary to compact disk space.

Linked allocation does have disadvantages, however. The major problem
is that it can be used effectively only for sequential-access files. To find the
ith block of a file, we must start at the beginning of that file and follow the
pointers until we get to the ith block. Each access to a pointer requires a disk
read, and some require a disk seek. Consequently, it is inefficient to support a
direct-access capability for linked-allocation files. :

Another disadvantage is the space required for the pointers. If a pointer
requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being
used for pointers, rather than for information. Each file requires slightly more
space than it would otherwise. _ :

The usual solution to this problem is to collectblocks into multiples, called
clusters, and to allocate clusters rather than blocks. For instance, the file system
may define a cluster as four blocks and operate on the disk only in cluster
unjts. Pointers then use a much smaller percentage of the file’s disk space.
This method allows the logical-to-physical block mapping to remain simple
but improves disk throughput (because fewer disk-head seeks are required)
and decreases the space needed for block allocation and free-list management.
The cost of this approach is an increase in internal fragmentation, because
more space is wasted when a cluster is partially full than when a block is
partially full. Clusters can be used to improve the disk-access time for many
other algorithms as well, so they are used in most file systems.

Yet another problem of linked allocation is reliability. Recall that the files
are linked together by pointers scattered all over the disk, and consider what
would happen if a pointer were lost or damaged. A bug in the operating-system
software or a disk hardware failure might result in picking up the wrong
pointer. This error could in turn result in linking into the free-space list or into
another file. One partial solution is to use doubly linked lists, and another is
to store the file name and relative block number in each block; however, these
schemes require even more overhead for each file.

An important variation on linked allocation is the use of a file-allocation
table (FAT). This simple but efficient method of disk-space allocation is used
by the MS-DOS and 05/2 operating systems. A section of disk at the beginning
of each volume is set aside to contain the table. The table has one entry for
each disk block and is indexed by block number. The FAT is used in much
the same way as a linked list. The directory entry contains the block number
of the first block of the file. The table entry indexed by that block number
contains the block number of the next block in the file. This chain continues
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directory entry
[Ttest | ses [ 217
name start block 0
217 618
339 -
618 339
no. of disk blocks -1

FAT

Figure 11.7 File-allocation table,
i

until the last block, which has a special end-of-file value as the table entry.
Unused blocks are indicated by a 0 table value. Allocating a new block to a
file is a simple matter of finding the first 0-valued table entry and replacing
the previous end-of-file value with the address of the new block. The 0'is then
replaced with the end-of-file value. An illustrative example is the FAT structure
shown in Figure 11.7 for a file consisting of disk biocks 217, 618, and 339.

The FAT allocation scheme can result in a significant number of disk head
seeks, unléss the FAT is cached. The disk head must move to the start of the
volume to read the FAT and find the location of the block in question, then
move to the location of the block itself. In the worst case, both moves occur for
each of the blocks. A benefit is that random-access time is improved, because
the disk head can find the location of any block by reading the information in
the FAT.

11.4.3 Indexed Allocation

Linked allocation solves the external-fragmentation and size-declaration prob-
lems of contiguous allocation. However, in the absence of a FAT, linked
allocation cannot support efficient direct access, since the pointers to the blocks
are scattered with the blocks themselves all over the disk and must be retrieved
in order. Indexed allocation solves this problem by bringing all the pointers
together into one location: the index block.

Each file has its own index block, which is an array of disk-block addresses.
The i** entry in the index block points to the i* block of the file. The directory
contains the address of the index block {Figure 11.8). To find and read the ith
block, we use the pointer in the i index-block entry. This scheme is similar to
the paging scheme described in Section 8.4.
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Figure 11.8 Indexed allocation of disk space.

When the file is created, all pointers in the index block are set to nil. When
the ith block is first written, a block is obtained from the free-space manager,
and its address is put in the ith index-block entry.

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the disk can satisfy a request for more
space. Indexed allocation does suffer from wasted space, however. The pointer
overhead of the index block is generally greater than the pointer overhead of
linked allocation. Consider a common case in which we have a file of only one
or two blocks. With linked altocation, we lose the space of only one pointer per
block. With indexed allocation, an entire index block must be allocated, even

" if only one or two pointers will be non-nil.

This point raises the question of how large the index block should be. Every
file must have an index block, so we want the index block to be as small as
possible. If the index block is too small, however, it will not be able to hold
enough pointers for a large file, and a mechanism will have to be available to
deal with this issue. Mechanisms for this purpose include the following:

= Linked scheme. An index block is normally one disk block. Thus, it can
be read and written directly by itself. To allow for large files, we can link
together several index blocks. For example, an index block might contain a
small header giving the name of the file and a set of the first 100 disk-block
addresses. The next address (the last word in the index block) is nil (for a
small file) or is a pointer to another index block (for a large file).

s Multilevel index. A variant of the linked representation is to use a first-
level index block to point to a set of second-ievel index blocks, which in
turn point to the file blocks. To access a block, the operating system uses
the first-level index to find a second-level index block and then uses that
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block to find the desired data block. This approach couid be continued to
a third cr fourth level, depending on the desired maximum file size. With
4,096-byte blocks, we could store 1,024 4-byte pointers in an index block.
Two levels of indexes allow 1,048,576 data blocks and a file size of up to 4
GB.

# Combined scheme. Another alternative, used in the UFS, is to keep the
first, say, 15 pointers of the index block in the file’s inode. The first 12
of these pointers point to direct blocks; that is, they contain addresses of
blocks that contain data of the file. Thus, the data for small files (of no more
than 12 blocks} do not need a separate index block. If the block size is 4 KB,
then up to 48 KB of data can be accessed directly. The next three pointers
point to indirect blocks. The first points to a single indirect block, which
is an index block containing not data but the addresses of blocks that do
contain data. The second points to a double indirect block, which contains
the address of a block that contains the addresses of blocks that contain
pointers to the actual data blocks. The last pointer contains the address
of a triple indirect block. Under this method, the number of blocks that
can be allocated to a file exceeds the amount of space addressable by the
4-byte file pointers used by many operating systems. A 32-bit file pointer
reaches only 2% bytes, or 4 GB. Many UNIX implementations, including
Solaris and IBM's ALX, now support up to 64-bit file pointers. Pointers of
this size allow files and file systems to be terabytes in size. A UNIX inode
is shown in Figure 11.9, '

Indexed-allocation schemes suffer from some of the same performance
problems as does linked allocation. Specifically, the index blocks can be cached
in memory, but the data blocks may be spread all over a volume.

mode
owners (2)

timestamps (3)

size block count

Figure 11.9 The UNIX inode.
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11'.4.4 Performance

The allocation methods that we have discussed vary in their storage efficiency
and data-block access times. Both are important criteria in selecting the proper
method or methods for an operating system to implement.

Before selecting an allocation method, we need to determine how the
systems will be used. A system with mostly sequential access should not use
the same method as a system with mostly random access.

For any type of access, contiguous allocation requires only one access to get
a disk block. Since we can easily keep the initial address of the file in memory,
we can calculate immediately the disk address of the ith block (or the next
block) and read it directly.

For linked allocation, we can also keep the address of the next block in
memory and read it directly. This method is fine for sequential access; for
direct access, however, an access to the ith block might require i disk reads. This
problem indicates why linked allocation should not be used for an application
requiring direct access.

As a result, some systems support direct-access files by using contiguous

allocation and sequential access by linked allocation. For these systems, the

type of access to be made must be declared when the file is created. A file
created for sequential access will be linked apd cannot be used for direct
access. A file created for direct access will be contiguous and can support both
direct access and sequential access, but its maximum length must be declared
when it is created. In this case, the operating system must have appropriate
data structures and algorithms to support both allocation methods. Files can be
converted from one type to another by the creation of a new file of the desired
type, into which the contents of the old file are copied. The old file may then
be deleted and the new file renamed.

Indexed allocation is more complex. If the index block is already in memory,
then the access can be made directly. However, keeping the index block in
memory requires considerable space. If this memory space is not available,
then we may have to read first the index block and then the desired data
block. For a two-level index, two index-block reads might be necessary. For an
extremely large file, accessing a block near the end of the file would require
reading in all the index blocks before the needed data block finally could
be read. Thus, the performance of indexed allocation depends on the index
structure, on the size of the file, and on the position of the block desired.

Some systems combine contiguous allocation with indexed allocation by
using contiguous allocation for small files (up to three or four blocks) and
automatically switching to an indexed allocation if the file grows large. Since
most files are small, and contiguous allocation is efficient for small files, average
performance can be quite good.

For instance, the version of the UNIX operating system from Sun Microsys-
tems was changed in 1991 to improve performance in the nle~system allocation
algorithm. The performance measurements indicated that the maximum disk
throughput on a typical workstation (a 12-MIP5 SPARCstation1) took 50 percent
of the CPU and produced a disk bandwidth of only 1.5 MB per second. To
improve performance, Sun made changes to allocate space in clusters of 56 KB
whenever possible (56 KB was the maximum size of a DMA transfer on Sun
systems at that time). This allocation reduced external iragmentation, and thus
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seek and latency times. In addition, the disk-reading routines were aptimized
to read in these large clusters. The inode structure was left unchanged, As a
result of these changes, pius the use of read-ahead and free-behind (discussed
in Section 11.6.2), 25 percent less CPU was used, and throughpui substantially
improved.

Many other optimizations are in use. Given the disparity between CPU
speed and disk speed, it is not unreascnable to add thousands of extra
instructions to the operating system to save just a few disk-head movements.
Furthermore, this disparity is increasing over time, to the point where hundreds
of thousands of instructions reasonably could be used to optimize head
movements.

o -

Since disk space is limited. we need to reuse the space from deleted files for new
files, if possible. (Write-once optical disks only allow one write to any given
sector, and thus such reuse is not physically possible.) To keep track of free disk
space, the system maintains a free-space list. The free-space list records all free
disk blocks —those not allocated to some file or directory. To create a file, we
search the free-space list for the required amount of space and allocate that
gpace to the new file. This space is then removed from the free-space list. When
a file is deleted, its disk space is added to the free-space list The free-space list,
despite its name, might not be implemented as a list, as we discuss next.

11.5.1 Bit Vector

Frequently, the free-space list is implemented as a bit map or bit vector. Each
block is represented by 1 bit. If the block is free, the bit is 1; if the block is
allocated, the bit is 0.

For example, consider a disk where blocks 2, 3. 4, 5,8, 9,10, 11, 12,13, 17,
18,25, 26, and 27 are free and the rest of the blocks are allocated. The free- -space
bit map would be

001111001111110007 10000001 1100000 ..

The main advantage of this approach is its relative simplicity and iis
efficiency in finding the first free block or n# consecutiv. froo blocks on the
disk. Indeed, many computers supply bit-manipuiation instructions that can
be used effectively for that purpose. For example, the intel faniily starting
with the 80386 and the Motorola family starting with the 68020 (processors
that have powered PCs and Macintosh systems, respectively) have instructions
that return the offset in a word of the first bit with the value i. One technique
for finding the first free block on 2 system that uses a bit-verter to allocate
disk space is to sequentlallv check each word in the bit map o see whether
that value is not §, since a 0-valued word has all 0 bits and rtpre sents a set of
allocated blacks. The first non-0 word is scanned for the first 1 bit which is the
location of the first free block. The calculation of the biock number is

(number of bits per word) x {number of 0-value words) + offset of first 1 bit.

Again, we see hardware [eatures driving software fumtmnahty Unfor-
tunately, bit vectors are inefficient unless the entire vector is kept in main
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memory (and is written to disk occasionally for recovery needs). Keeping it in
main memory is possible for smaller disks but not necessarily for larger ones.
A 1.3-GB disk with 512-byte blocks would need a bit map of over 332 KB to
track its free blocks, although clustering the blocks in groups of four reduces
this number to over 83 KB per disk. A 40-GB disk with 1-kB blocks requires over
5 MB to store its bit map.

11.5.2 Linked List

Another approach to free-space management is to link together all the free disk
blocks, keeping a pointer to the first free block in a special location on the disk
and caching it in memory. This first block contains a pointer to the next free
disk block, and so on. In our earlier example (Section 11.5.1), we would keep a
pointer to block 2 as the first free block. Block 2 would contain a pointer to block
3, which would point to block 4, which would point to block 5, which would
point to block 8, and so on (Figure 11.10). However, this scheme is not efficient;
to traverse the list, we must read each block, which requires substantial 1/0
time. Fortunately, traversing the free list is not a frequent action. Usually, the
operating system simply needs a free block so that it can allocate that block
to a file, so the first block in the free list is used. The FAT method incorporates
free-block accounting into the allocation data structure. No separate method is
needed.

11.5.3 Grouping

A modification of the free-list approach is to store the addresses of n free blocks
in the first free block. The first n—1 of these blocks are actually free. The last
block contains the addresses of another 1 free blocks, and so on. The addresses

free-space list head —

1213114 ]15)
e[ 1171819
20{J21[J22f 1231
24 Jes[Cize[ To7i %
28[ 29 130 131[]]
N~

Figure 11.10 Linked free-space list on disk.
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of a large number of free blocks can now be found quickly, unlike the situation
when the standard linked-list approach is used.

11.5.4 Counting

Another approach is to take advantage of the fact that, generally, several
contiguous blocks may be allocated or freed simultaneously, particularly
when space is allocated with the contiguous-aliocation algorithm or through
clustering. Thus, rather than keeping a list of n free disk addresses, we can
keep the address of the first free block and the number 1 of free contiguous
blocks that follow the first block. Each entry in the free-space list then consists
of a disk address and a count. Although each entry requires more space than
would a simple disk address, the overali list will be shorter, as long as the count
is generally greater than 1.

[ [ T S NI ST

Now that we have discussed various block-allocation and directory-
management options, we can further consider their effect on performance
and efficient disk use. Disks tend to represent a major bottleneck in system
performance, since they are the slowest main computer component. In this
section, we discuss a variety of techniques used to improve the efficiency and
performance of secondary storage.

11.6.1 Efficiency

The efficient use of disk space depends heavily on the disk allocation and
directory algorithms in use. For instance, UNIX inodes are preallocated on a
volume, Even an “empty” disk has a percentage of its space lost to inodes.
However, by preallocating the inodes and spreading them across the volume,
we improve the file system’s performance. This improved performance results
from the UNIX allocation and free-space algorithms, which try to keep a file’s
data blocks near that file’s inode block to reduce seek time.

As another example, let's reconsider the clustering scheme discussed in
Section 11.4, which aids in file-seek and file-transfer performance at the cost
of internal fragmentation. To reduce this fragmentation, BSD UNIX varies the
cluster size as a file grows. Large clusters are used where they can be filled, and
small clusters are used for small files and the last cluster of a file. This system
is described in Appendix A.

The types of data normally kept in a file’s directory (or inode) entry also
require consideration. Commonly, a “last write date™ js recorded to supply
information to the user and to determine whether the file needs to be backed
up. Some systems also keep a “last access date,” so that a user can determine
when the file was last read. The result of keeping this information is that,
whenever the file is read, a field in the directory structure must be written
to. That means the block must be read into memory, a section changed, and
the block written back out to disk, because operations on disks occur only in
block (or cluster) chunks. So any time a file is opened for reading, its directory
entry must be read and written as well. This requirement can be inefficient for
frequently accessed files, so we must weigh its benefit against its performance
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cost when designing a file system, Generally, every data item associated with a
file needs to be considered for its effect on efficiency and performance.

As an example, consider how efficiency is affected by the size of the pointers
used to access data. Most systems use either 16- or 32-bit pointers throughout
the operating system. These pointer sizes limit the length of a file to either
216 (64 KB) or 2°2 bytes (4 GB). Some systems implement 64-bit pointers to
increase this limit to 2 bytes, which is a very large number indeed. However,
64-bit pointers take more space to store and in turn make the allocation and
free-space-management methods (linked lists, indexes, and so on) use more
disk space.

One of the difficulties in choosing a pointer size, or indeed any fixed
allocation size within an operating system, is planning for the effects of
changing technology. Consider that the IBM PC XT had a 10-MB hard drive
and an MS-DOS file system that could support only 32 MB. (Each FAT entry
was 12 bits, pointing to an 8-K8 cluster.) As disk capacities increased, larger
disks had to be split into 32-MB partitions, because the file system could not
track blocks beyond 32 MB. As hard disks with capacities of over 100 MBbecame
common, the disk data structures and algorifhms in M5-DOS had to be modified
to allow larger file systems. {(Each FAT entry was expanded to 16 bits and later
to 32 bits.) The initial file-system decisions were made for efficiency reasons;
however, with the advent of MS-DOS version 4, millions of coraputer users were
inconvenienced when they had to switch to the new, larger file system. Sun's
7Fs file system uses 128-bit pointers, which theoretically should never need
to be extended. (The minimum mass of a device capable of storing 2128 bytes
using atomic-level storage would be about 272 trillion kilograms.)

As another example, consider the evolution of Sun’s Solaris operating
system. Originally, many data structures were of fixed length, allocated at
system startup. These structures included the process table and the open-file
table. When the process table became full, no more processes could be created.
When the file table became full, no more files could be opened. The system
would fail to provide services to users. Table sizes could be increased only by
recompiling the kemnel and rebooting the system. Since the release of Solaris
2. almost all kernel structures have been allocated dynamically, eliminating
these artificial limits on system performance. Of course, the algorithms that
manipulate these tables are more compiicated, and the operating system is a
little slower because it must dynamically allocate and deallocate table entries;
but that price is the usual one for more general functionality.

11.6.2 Performance

TFven after the basic file-system algorithms have been selected, we can still
improve performance in several ways. As will be discussed in Chapter 13,
most disk controllers include local memory to form an on-board cache that
is large enough to store entire tracks at a time. Once a seek is performed, the
track is read into the disk cache starting at the sector under the disk head
(reducing latency time). The disk controller then transfers any sector requests
to the operating system. Once blocks make it from the disk controller into main
memory, the operating system may cache the blocks there.

Some systems maintain a separate section of main memory for a buffer
cache, where blocks are kept under the assumption that they will be used
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again shortly. Other systems cache file data using a page cache. The page
cache uses virtual memory techniques to cache file data as pages rather than
as file-system-oriented blocks. Caching file data using virtual addresses is far
more efficient than caching through physical disk blocks, as accesses interface
with virtval memory rather than the file system. Several systems—including
Solaris, Linux, and Windows NT, 2000, and Xr—use page caching to cache
both process pages and file data. This is known as unified virtual memory.

Some versions of UNIX and Linux provide a unified buffer cache. To
illustrate the benefits of the unified buffer cache, consider the two alternatives
for opening and accessing a file. One approach is to use memory inapping
{Section 9.7}, the second is to use the standard system calls read() and
write (). Without a unified buffer cache, we have a situatjon similar to Figure
11.11. Here, the read () and write () system calls go through the buffer cache.
The memory-mapping call, however, requires using two caches—the page
cache and the buffer cache. A memory mapping proceeds by reading in disk
blocks from the file system and storing them in the buffer cache. Because the
virtual memory system does not interface with the buffer cache, the contents
of the file in the buffer cache must be copied into the page cache. This situation
is known as double caching and requires caching file-system data twice. Not
only does it waste memory but it also wastes significant CPU and 170 cycles due
to the extra data movement within system memory. In addition, inconsistencies
between the two caches can result in corrupt files. In contrast, when a unified
buffer cache is provided, both memory mapping and the read () and write()
system calls use the same page cache. This has the benefit of avoiding double
caching, and it allows the virtual memory system to manage file-system data.
The unified buffer cache is shown in Figure 11.12.

Regardless of whether we are caching disk blocks or pages (or both), LRU
(Section 9.4.4) seems a reasonable general-purpose algorithm for block or page
replacement. However, the evolution of the Solaris page-caching algorithms
reveals the difficulty in choosing an algorithm. Solaris allows processes and the



413

Chapter 11

memory-mapped I/O tead . w mg.()
buffer cache

file system

Figure 11.12 |/O using a unified buffer cache.

page cache to share unused memory. Versions earlier than Solaris 2.5.1 made
no distinction between aliocating pages to a process and allocating them to
the page cache. As a result, a system performing many 1/0 operations used
most of the available memory for caching pages. Because of the high rates
of 1/0, the page scanner (Section 9.10.2) reclaimed pages from processes--—
rather than from the page cache—when free memory ran low. Solaris 2.6 and
Solaris 7 optionally implemented priority paging, in which the page scanner
gives priority to process pages over the page cache. Solaris 8 applied a fixed
limit to process pages and the file-system page cache, preventing either from
forcing the other out of memory. Solaris 9 and 10 again changed the algorithms
to maximize memory use and minimize thrashing. This real-world example
shows the complexities of performance optimizing and caching.

There are other issues that can affect the performance of 1/0 such as
whether writes to the file system occur synchronously or asynchronously.
Synchroncus writes occur in the order in which the disk subsystem receives
them, and the writes are not buffered. Thus, the calling routine must wait for
the data to reach the disk drive before it can proceed. Asynchronous writes are
done the majority of the time. In an asynchronous write, the data are stored in
the cache, and control returns to the caller. Metadata writes, among others, can
be synchronous. Operating systems frequently include a flag in the open system
call to allow a process to request that writes be performed synchronously. For
example, databases use this feature for atomic transactions, to assure that data
reach stable storage in the required order.

Some systems optimize their page cache by using different replacement
algorithms, depending on the access type of the file. A file being read or written
sequentially should not have its pages replaced in LRU order, because the most
recently used page will be used last, or perhaps never again. Instead, sequential
access can be optimized by techniques known as free-behind and read-ahead.
Free-behind removes a page from the buffer as soon as the next page is
requested. The previous pages are not likely to be used again and waste buffer
space. With read-ahead, a requested page and several subsequent pages are
read and cached. These pages are likely to be requested after the current page
is processed. Retrieving these data from the disk in one transfer and caching
them saves a considerable amount of time. One might think a track cache on the
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controller eliminates the need for read-ahead on a multiprogrammed system.
However, because of the high latency and overhead involved in making many
small transfers from the track cache to main memory, performing a read-ahead
remains beneficial.

The page cache, the file system, and the disk drivers have some interesting
interactions. When data are written to a disk file, the pages are buffered in the
cache, and the disk driver sorts its output queue according to disk address.
These two actions allow the disk driver to minimize disk-head seeks and to
write data at times optimized for disk rotatior.. Unless synchronous writes are
required, a process writing to disk simply writes into the cache, and the system
asynchronously writes the data to disk when convenient. The user process sees
very fast wriles. When data are read from a disk file, the block 1/0 system does
some read-ahead; however, writes are much more nearly asynchronous than
are reads. Thus, output to the disk through the file system is often faster than
is input for large transfers, counter to intuition.

Files and directories are kept both in main memory and on disk, and care must
taken to ensure that system failure does not result in loss of data or in data
inconsistency. We deal with these issues in the following sections.

1.7.1 Consistency Checking

As discussed in Section 11.3, some directory information is kept in main
memory (or cache) to speed up access. The directory information in main
memory is generally more up to date than is the corresponding information
on the disk, because cached directory information is not necessarily written to
disk as soon as the update takes place.

Consider, then, the possible effect of a computer crash. Cache and buffer
contents, as well as [/O operations in progress, can be lost, and with them
any changes in the directories of opened files. Such an event can leave the file
system in an inconsistent state: The actual state of some files is not as described
in the directory structure. Frequently, a special program is run at reboot time
to check for and correct disk inconsistencies.

The consistency checker—a systems program such as fsck in UNIX or
chkdsk in MS-DOS—compares the data in the directory structure with the
data blocks on disk and tries to fix any inconsistencies it finds. The allocation
and free-space-management algorithms dictate what types of problems the
checker can find and how successful it will be in tixing them. For instance, if
linked allocation is used and there is a link from any block to its next block,
then the entire file can be reconstructed from the data blocks, and the directory
structure can be recreated. In contrast, the loss of a directory entry on an indexed
allocation system can be disastrous, because the data blocks have no knowledge
of one another. For this reason, UNIX caches directory entries for reads; but any
data write that results in space allocation, or other metadata changes, is done
synchronously, before the corresponding data blocks are written. Of course,
problems can’still occur if a synchronous write is interrupted by a crash.
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11.7.2 Backup and Restore

Magnetic disks sometimes fail, and care must be taken to ensure that the data
lost in such a failure are not lost forever. To this end, systemn programs can be
used to back up data from disk to another storage device, such as a floppy
disk, magnetic tape, optical disk, or other hard disk. Recovery from the loss of
an individual file, or of an entire disk, may then be a matter of restoring the
data from backup.

To minimize the copying needed, we can use information from each file’s
directory entry. For instance, if the backup program knows when the last
backup of a file was done, and the file’s last write date in the directory indicates
that the file has not changed since that date, ther: the file does not need to be
copied again. A typical backup schedule may then be as follows:

Day 1. Copy to a backup medium all files from the cisk. This is called a
full backup.

Day 2. Copy to another medium all files changed since day 1. This is an
incremental backup.

Day 3. Copy to another medium all files changed since day 2.

Day N. Copy te another medium all files changed since day N—1. Then
go back to Day 1.

The new cycle can have its backup written over the previous set or onto
a new set of backup media. In this manner, we can restore an entire disk
by starting restores with the full backup and continuing through each of the
incremental backups. Of course, the larger the value of N, the greater the
number of tapes or disks that must be read for a complele restore. An added
advantage of this backup cvcle 1s that we can restore any file accidentally
deleted during the cycle by retrieving the deleted file from the backup of the
vrevious day. The length of the cycle is 2 compromise between the amount of
backup medium needed and the number of days back from which a restore
can be done. To decrease the number of tapes that must be read to do a restore,
an option is to perform a full backup and then each day back up all files
that have changed since the full backup. In this way. a restore can be done
via the most recent incremental backup and the full backup, with no other
incremental backups needed. The trade-off is that more files will be modified
each day, so each successive incremental backup involves more files and more
backup media.

A user may notice that a particular file is missing or corrupted long after
the damage was done. For this reason, we usually plan to take a full backup
from time to time that will be saved “forever.” It is a good idea to store these
permanent backups far away from the regular backups to protect against
hazard, such as a fire that destroys the computer and all the backups too.
And if the backup cycle reuses media, we must take care not to reuse the
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media too many times—if the media wear out, it might not be possible to
restore any data from the backups.

S SavuGinred Fie Systems

Computer scientists often find that algorithms and technologies originally used
in one area are equally useful in other areas. Such is the case with the database
log-based recovery algorithms described in Section 6.9.2. These logging algo-
rithms have been applied successfully to the problem of consistency checking.
The resulting implementations are known as log-based transaction-oriented
(or journaling) file systems.

Recall that a system crash can cause inconsistencies among on-disk file-
system data structures, such as directory structures, free-block pointers, and
free FCB pointers. Before the use of log-based techniques in operating systems,
changes were usually applied to these structures in place. A typical operation,
such as file create, can involve many structural changes within the file system
on the disk. Directory structures are modified, FCBs are allocated, data blocks
are allocated, and the free counts for all of these blocks are decreased. These
changes can be interrupted by a crash, and inconsistencies among the structures
can result. For example, the free FCB count might indicate that an FCB had been
allocated, but the directory structure might not point to the FCB. The FCB would
be lost were it not for the consistency-check phase.

Although we can allow the structures to break and repair them on recovery,
there are several problems with this approach. One is that the inconsistency
may be irreparable. The consistency check may not be able to recover the
structures, resulting in loss of files and even entire directories. Consistency
checking can require human intervention to resolve conflicts, and that is
inconvenient if no human is available. The system can remain unavailable until
the human tells it how to proceed. Consistency checking also takes system and
clock time. Terabytes of data can take hours of clock time te check.

The solution to this problem is to apply log-based recovery techniques to
file-system metadata updates. Both NTFS and the Veritas file system use this
method, and it is an opticnal addition to UFS on Solaris 7 and beyond. In fact,
it is becoming common on many operating systems.

Fundamentally, all metadata changes are written sequentially to a Jog.
Each set of operations for performing a specific task is a transaction. Once
the changes are written to this log, they are considered to be committed,
and the systemn call can retumn to the user process, allowing it to continue
execution. Meanwhile, these log entries are replayed across the actual file-
system structures. As the changes are made, a pointer is updated to indicate
which actions have completed and which are still incomplete. When an entire
committed transaction is completed, it is removed from the log file, which is
actually a circular buffer. A circular buffer writes to the end of its space and
then continues at the beginning, overwriting older values as it goes. We would
not want the buffer to write over data that has not yet beer: saved, so that
scenario is avoided. The log may be in a separate section of the file system or
even on a separate disk spindle. It is more efficient, but more complex, to have
it under separate read and write heads, thereby decreasing head contention
and seek times.
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If the system crashes, the log file will contain zero or more transactions.
Any transactions it contains were not completed to the file system, even though
they were committed by the operating system, so they must now be completed.
The transactions can be executed from the pointer until the work is complete
so that the file-system structures remain consistent. The only problem occurs
when a transaction was aborted —that is, was not committed before the systemn
crashed. Any changes from such a transaction that were applied to the file
system must be undone, again preserving the consistency of the file system.
This recovery is all that is needed after a crash, eliminating any problems with
consistency checking.

A side benefit of using logging on disk metadata updates is that those
updates proceed much faster than when they are applied directly to the on-disk
data structures. The reason for this improvement is found in the performance
advantage of sequential 1/0 over random 1/0. The costly synchronous random
metadata writes are turned into much less costly synchronous sequential writes
to the log-structured file system’s logging area. Those changes in turn are
replayed asynchronously via random writes to the appropriate structures.
The overall result is a significant gain in performance of metadata-oriented
operations, such as file creation.and deletion.

Network file systems are commonplace. \They are typically integrated with
the overall directory structure and interface of the client system. NFS is a
good example of a widely used, well-implemented client—server network file
system. Here, we use it as an example to explore the implementation details of
network file systems.

NFS is both an implementation and a specification of a software system for
accessing remote files across LANs (or even WANS). NFS is part of ONC+, which
most UNIX vendors and some PC operating systems support. The implementa-
tion described here is part of the Solaris operating system, which is a modified
version of UNIX SVR4 running on Sun workstations and other hardware. It uses
either the TCP or UDP/IP protocol (depending on the interconnecting network).
The specification and the implementation are intertwined in our description of
NFS. Whenever detail is needed, we refer to the Sun implementation; whenever
the description is general, it applies to the specification also.

11.9.1 Overview

NFS views a set of interconnected workstations as a set of independent machines
with independent file systems. The goal is to allow some degree of sharing
among these file systems (on explicit request) in a transparent manner. Sha ring
is based on a clieni—server relationship. A machine may be, and often is, both a
client and a server. Sharing is allowed between any pair of machines. To ensure
machine independence, sharing of a remote file system affects only the client
machine and no other machine.

So that a remote directory will be accessible in a transparent manner
from a particular machine-—say, from M1—a client of that machine must
first carry out a mount operation. The semantics of the operation involve
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Figure 11,13 Three independent file systems.

mounting a remote directory.over a directory of a local file system. Once the
mount operation is completed, the mounted directory looks like an integral
subtree of the local file system, replacing the subtree descending from the
local directory. The local directory becomes the name of the root of the newly
mounted directory. Specification of the remote directory as an argument for the
mount operation is not done transparently; the location {or host name) of the
remote directory has to be provided. However, from then on, users on machine
M1 can access files in the remote directory in a totally transparent manner.

To illustrate file mounting, consider the file system depicted in Figure
11.13, where the triangles represent subtrees of directories that are of interest.
The figure shows three independent file systems of machines named U, S1,
and S2. At this point, at each machine, only the local files can be accessed. In
Figure 11.14(a), the effects of mounting 51: /usr/shared over U: /usr/local
are shown. This figure depicts the view users on U have of their file system.
Notice that after the mount is complete they can access any file within the
dirl directory using the prefix /usr/local/dirl. The original directory
/usr/local on that machine is no longer visible.

Subject to access-rights accreditation, any file system, or any directory
within a file system, can be mounted remotely on top of any local directory.
Diskless workstations can even mount their own roots from servers.

Cascading mounts are also permitted in some NFS implementations. That
is, a file system can be mounted over another file system that is femotely
mounted, not local. A machine is affected by only those mounts that it has
itself invoked. Mounting a remote file system does not give the client access to
other file systems that were, by chance, mounted over the former file system.
Thus, the mount mechanism does not exhibit a transitivily property.

In Figure 11.14(b), we illustrate cascading mounts by continuing our
previous example. The figure shows the result of mounting §2: /usr/dir2
over U: /usr/local/dirl, which is already remotely mounted from S7. Users
can access files within dir2 on U using the prefix /usr/local/dirl. [fashared
file system is mounted over a user’s home directories on all machines in a
network, the user can log into any workstation and get his home environment.
This property permits user mobility.
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Figure 11.14 Mounting in NFS. (a) Mounts. (b} Cascading mourts.

v

One of the design goals of NFS was to operate in a heterogeneous environ-
ment of different machines, operating systems, and network architectures.
The NFS specification is independent of these media and thus encourages
other implementations. This independence is achieved through the use of
RPC primitives built on top of an external data representation (XDR) proto-
col used between two implementation-independent interfaces. Hence, if the
system consists of heterogeneous machines and file systems that are properly
interfaced to NFS, file systems of different types can be mounted both locally
and remotely.

The NFS specification distinguishes between the services provided by a
mount mechanism and the actual remote-file-access services. Accordingly, two
separate protocols are specified for these services: a mount protocol and a
protocol for remote file accesses, the NFS protocol. The protocols are specified as
sets of RPCs. These RPCs are the building blocks used to implement transparent
remote file access.

11.9.2 The Mount Protocol

The mount protacol establishes the initial logical connection between a server
and a client. In Sun’s implementation, each machine has a server process,
outside the kernel, performing the protocol functions.

A mount operation includes the name of the remote directory to be
mounted and the name of the server machine storing it. The mount request
is mapped to the corresponding RPC and is forwarded to the mount server
running on the specific server machine. The server maintains an export list
that specifies local file systems that it exports for mounting, along with names
of machines that are permitted to mount them. (In Soiaris, this list is the
/etc/dfs/dfstab, which can be edited only by a superuser.) The specification
can also include access rights, such as read only. To simplify the maintenance
of export lists and mount tables, a distributed naming scheme can be used to
hold this information and make it available to appropriate clients.
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Recall that any directory within an exported file system can be mounted
remotely by an accredited machine. A component unitis such a directory. When
the server receives a mount request that conforms to its export list, it refurns to
the client a tile handle that serves as the key for further accesses to files within
the mounted file system. The file handle contains all the information that the
server needs to distinguish an individual file it stores. In UNIX terms, the file
handie consists of a file-system identifier and an inode number to identify the
exact mounted directory within the exported file system.

 The server also maintains a list of the client machines and the corresponding .
currently mounted directories. This list is used mainly for administrative
purposes—for instance, for notifying all clients that the server is going down.
Only through addition and deletion of entries in this list can the server state
be affected by the mount protocol.

Usually, a system has a static mounting preconfiguration that is established
at boot time {/etc/vEstab in Solaris); however, this layout can be modified. In
addition to the actual mount procedure, the mount protocol! includes several
other procedures, such as unmount and return export list.

11.9.3 The NFS Protocol

The NFS protocol provides a set of RPCs for remote file operations. The
procedures support the following operations:

« Searching for a file within a directory
» Reading a set of directory entries

« Manipulating links and directories

v Accessing file attributes

+ Reading and writing files

These procedures can be invoked only after a file handle for the remotely
mounted directory has been established.

“The omission of open() and close(} operations is intentional. A promi-
nent feature of NES servers is that they are stateless. Servers do not maintain
information about their clients from one access to another. No parallels to
UNIX's open-files table or file structures exist on the server side. Consequently,
each request has to provide a full set of arguments, including a unique file
identifier and an absolute offset inside the file for the appropriate operations.
The resulting design is robust; no special measures need be taken to recover
a server after a crash. File operations must be idempotent for this purpose.
Every NFS request has a sequence number, allowing the server to determine if
a request is duplicated or if any are missing.

Maintaining the list of clients that we mentioned seems to violate the
statelessness of the server. However, this list is not essential for the correct
operation of the client or the server, and hence it does not need to be restored
after a server crash. Consequently, it might include inconsistent data and is
treated as only a hint.

A further implication of the stateless-server philosophy and a result of the
synchrony of an RPC is that modified data (including indirection and status
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blocks) must be committed to the server’s disk before results are returned to
the client. That is, a client can cache write blocks, but when it flushes them
to the server, it assumes that they have reached the server’s disks. The server
must write all NFS data synchronously. Thus, a server crash and recovery
will be invisible to a client; all blocks that the server is managing for the
client will be intact. The consequent performance penalty can be large, because
the advantages of caching are lost. Performance can be increased by using
storage with its own nonvolatile cache (usually battery-backed-up memory).
The disk controller acknowledges the disk write when the write is stored in
the nonvolatile cache. In essence, the host sees a very fast synchronous write.
These blocks remain intact even after system crash and are written from this
stable storage to disk periodically.

A single NFS write procedure call is guaranteed to be atomic and is not
intermixed with other write calls to the same file. The NFS protocel, however,
does not provide concurrency-control mechanisms. A write () system calimay
be broken down into several RPC writes, because each NFS write or read call
can contain up to 8 KB of data and UDP packets are limited to 1,500 bytes. As a
result, two users writing to the same remote file may get their data intermixed.
The claim is that, because lock management is inherently stateful, a service
outside the NFs should provide locking (and Solaris does). Users are advised
to coordinate access to shared files using mechanisms outside the scope of NFS.

NES is integrated into the operating system via a VFS. As an illustration
of the architecture, let’s trace how an operation on an already open remote
file is handled {follow the example in Figure 11.15). The client initiates the
operation with a regular system call. The operating-system layer maps this
call to a VFS operation on the appropriate vnode. The VFs layer identifies the

client server
+ sygtem-calls interface
VFS interface " VF8 interface
other types of | | UNIX file NFS NFS UNIX filg
file syslems system - cfient sefver systom

F

k.

RPC/XDR RPC/XDR

disk

| - rework |

Figure 11.15 Schematic view of the NFS architecture.
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file as a remote one and invokes the appropriate NFs procedure. An RPC call
is made to the NFs service layer at the remote server. This call is reinjected to
the VFS layer on the remote system, which finds that it is local and invokes
the appropriate file-system operation. This path is retraced to return the result.
An advantage of this architecture is that the client and the server are identical;
thus, a machine may be a client, or a server, or both. The actual service on each
server is performed by kernel threads.

11.9.4 Path-Name Translation

Path-name translation in NFS involves the parsing of a path-name such as
/usr/local/dirl/file.txt into separate directory entries—or components:
(1) usr, (2) local, and (3) dirl. Path-name translation is done by breaking the
path into component names and performing a separate NFS lookup call for
every pair of component name and directory vnode. Once a mount point is
crossed, every component lookup causes a separate RPC to the server. This
expensive path-name-traversal scheme is needed, since the layout of each
client’s logical name space is unique, dictated by the mounts the client has
performed. It would be much more efficient to hand a server a path name
and receive a target vnode once a mount point is encountered. At any point,
however, there can be another mount point for the particular client of which
the stateless server is unaware.

So that lookup is fast, a directory-name-lookup cache on the client side
holds the vnodes for remote directory names. This cache speeds up references
to files with the same initial path name. The directory cache is discarded when
attributes returned from the server do not match the attributes of the cached
vnode.

Recall that mounting a remote file system on top of another already
mounted remote file system (a cascading mount) is allowed in some imple-
mentations of NFS. However, a server cannot act as an intermediary between a
client and another server. Instead, a client must establish a direct client-server
connection with the second server by directly mounting the desired directory.
When a client has a cascading mount, more than one server can be involved in a
path-name traversal. However, each component lookup is performed between
the original client and some server. Therefore, when a client does a lookup on
a directory on which the server has mounted a file system, the client sees the
underlying directory instead of the mounted directory.

11.9.5 Remote Operations

With the exception of opening and closing files, there is almost a one-to-one
correspondence between the regular UNIX system calls for file operations and
the NFS protocol RPCs. Thus, a remote file operation can be translated directly
to the corresponding RPC. Conceptually, NFS adheres to the remote-service
paradigm; but in practice, buffering and caching techniques are employed for
the sake of performance. No direct correspondence exists between a remote
operation and an RPC. Instead, file blocks and file attributes are fetched by the
RPCs and are cached locally. Future remote operations use the cached data,
subject to consistency constraints.

There are two caches: the file-attribute (inode-information} cache and the
file-blocks cache. When a file is opened, the kernel checks with the remote
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server to determine whether to fetch or re-validate the cached attributes. The
cached file blocks are used only if the corresponding cached attributes are up
to date. The attribute cache is updated whenever new attributes arrive from
the server. Cached attributes are, by default, discarded after 60 seconds. Both
read-ahead and delayed-write techniques are used between the server and the
client. Clients do not free delayed-write blocks until the server confirms that
the data have been written to disk. In contrast to the system used in Sprite
distributed file system, delayed-write is retained even when a file is opened
concurrently, in conflicting modes. Hence, UNIX semantics Section 10.5.3.1) are
riot preserved.

Tuning the system for performance makes it difficult to characterize the
consistency semantics of NFS. New files created on a machine may not be
visible elsewhere for 30 seconds. Furthermore, writes to a file at one site may
or may not be visible at other sites that have this file open for reading. New
opens of a file observe only the changes that have already been flushed to the
server. Thus, NFS provides neither strict emulation of UNIX semantics nor the
session semantics of Andrew (Section 10.5.3.2). In spite of these drawbacks, the
utility and good performance of the mechanism make it the most widely used
multi-vendor-distributed system in operation.

1110 Fx0 e Thee NS File Seston

Disk 1/0 has a huge impact on system performance. As a result, file-system
design and implementation command quite a lot of attention from system
designers. Some file systems are general purpose, in that they can provide
reasonable performance and functionality for a wide variety of file sizes, file
types, and 170 loads. Others are optimized for specific tasks in an attempt to
provide better performance in those areas than general-purpose file systems.
The WAFL file system from Network Appliance is an example of this sort of
optimization. WAFL, the write-anywhere file layoul, is a powerful, elegant file
system optimized for random writes.

WAFL is used exclusively on network file servers produced by Network
Appliarce and so is meant for use as a distributed file system. It can provide
files to clients via the NFS, CIFS, ftp, and http protocols, although it was
designed just for NFS and CIFS. When many clients use these protocols to talk
to a file server, the server may see a very large demand for random reads and
an even larger demand for random writes. The NFs and CIF5 protocols cache
data from read operations, so writes are of the greatest concern to file-server
creators.

WAFL is used on file servers that include an NVRAM cache for writes.
The WAFL designers took advantage of running on a specific architecture to
optimize the file system for random 170, with a stable-storage cache in front.
Ease of use is one of the guiding principles of WAFL, because it is designed
to be used in an appliance. Its creators also designed it to include a new
snapshot functionality that creates multiple read-only copies of the file system
at different points in time, as we shall see.

The file system is similar to the Berkeley Fast File System, with many
modifications. It is block-based and uses inodes to describe files. Each inode
contains 16 pointers to blocks (or indirect blocks) belonging to the file described
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Figure 11.16 The WAFL file layout.

by ile mode. Each file system has a root inode. All of the metadata lives in
files: all inodes are in one file, the free-block ma p i another, and the free-inode
map in a third, as shown in Figure 11.16. Because these are standard files, the
data blocks are not limited in location and can be placed anywhere. If a file
system is expanded by addition of disks, the lengths of these metadata files are
automatically expanded by the file system.

Thus, a WAFL file system is a tree of blocks rooted by the root inode. To take
a snapshot, WAFL creates a duplicate root inode. Any file or metadata updates
after that go to new blocks rather than overwriting their existing blocks. The
new root inode points to metadata and data changed as a result of these writes.
Meanwhile, the old root inode still points to the old blocks, which have not
been updated. It therefore provides access to the file system just as it was at the
instant the snapshot was made—and takes very little disk space to do so! In
essence, the extra disk space occupied by a snapshot consists of just the blocks
that have been modified since the snapshot was taken.

Animportant change from more standard file systems is that the free-block
map has more than one bit per block. It is a bitmap with a bit set for each
snapshot that is using the block. When all snapshots that have been using the
block are deleted, the bit map for that block is all zeros, and the block is free to
be reused. Used blocks are never overwritten, so writes are very fast, because
a write can occur at the free block nearest the current head location. There are
many other performance optimizations in WAFL as well.

Many snapshots can exist simultaneously, so one can be taken each hour
of the day and each day of the month. A user with access to these snapshots
can access files as they were at any of the times the snapshots were taken.
The snapshot facility is also useful for backups, testing, versioning, and so on.
WAFL's snapshot facility is very efficient in that it does not even require that
copy-on-write copies of each data block be taken before the block is modified.
Other file systems provide snapshots, but frequently with less efficiency. WAFL
snapshots are depicted in Figure 11.17.

The file system resides permanently on secondary storage, which is designed to
hold a large amount of data permanently. The most common secondarv-storage
medium is the disk.
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Figure 11.17 Snapshots in WAFL.

Physical disks may be segmented into partitions to control media use
and to allow multiple, possibly varying, file systems on a single spindle.
These file systems are mounted onto a logical file system architecture to make
them available for use. File systems are often implemented in a layered or
modular structure. The lower levels deal with the physical properties of storage
devices. Upper levels deal with symbolic file names and logical properties of
files. Intermediate levels map the logical file concepts into physical device
properties.

Any file-system type can have different structures and algorithms. A VIS
layer allows the upper layers to deal with each file-system type uniformly. Even
remote file systems can be integrated into the system’s directory structure and
acted on by standard system calls via the VFS interface.

The various files can be allocated space on the disk in three ways: through
contiguous, linked, or indexed allocation. Contiguous allocation can suffer
from external fragmentation. Direct access is very inefficient with linked
allocation. Indexed allocation may require substantial overhead for its index
btock. These algorithms can be optimized in many ways. Contiguous space
can be enlarged through extents to increase flexibility and to decrease external
fragmentation. Indexed allocation can be done in clusters of multiple blocks
to increase throughput and to reduce the number of index entries needed.
Indexing in large clusters is similar to contiguous allocation with extents.
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Free-space allocation methods also influence the efficiency of disk-space
use, the performance of the file system, and the reliability of secondary storage.
The methods used include bit vectors and linked lists. Optimizations include
grouping, counting, and the FAT, which places the linked list in one contiguous
area.

Directory-management routines must consider efficiency, performance,
and reliability. A hash table is a commonly used method as it is fast and
efficient. Unfortunately, damage to the table or a system crash can result
in inconsistency between the directory information and the disk’s contents.
A consistency checker can be used to repair the damage. Operating-system
backup tools allow disk data to be copied to tape, enabling the user to recover
from data or even disk loss due to hardware failure, operating system bug, or
user error.

Network file systems, such as NFS, use client—server methodology to
allow users to access files and directories from remote machines as if they
were on local file systems. System calls on the client are translated into
network protocols and retranslated into file-system operations on the server.
Networking and multiple-client access create challenges in the areas of data
consistency and performance.

Due to the fundamerital role that file systems play in system operatiorn,
their performance and reliability are crucial. Techniques such as log structures
and caching help improve performance, while log structures and RAID improve
reliability. The WAFL file system is an example of optimization of performance
to match a specific [/0 load.

11.1  Consider a file system that uses a modifed contiguous-allocation
scheme with support for extents. A file is a collection of extents, with
each extent corresponding to a contiguous set of blocks. A key issue in
such systems is the degree of variability in the size of the extents. What
are the advantages and disadvantages of the following schemes?

All extents are of the same size, and the size is predetermined.
b. Extents can be of any size and are allocated dynamically.

¢. Extents can be of a few fixed sizes, and these sizes are predeter-
mined.

11.2 What are the advantages of the variant of linked allocation that uses a
FAT to chain together the blocks of a file?

11.3  Some file systems allow disk storage to be allocated at different levels
of granularity. For instance, a file system could allocate 4 KB of disk
space as a single 4-KB block or as eight 512-byte blocks. How could
we take advantage of this flexibility to improve performance? What
modifications would have to be made to the free-space management
scheme in order to support this feature?



432

Chapter 11

114 Discuss how performance optimizations for file systems might result
in difficulties in maintaining the consistency of the systems in the event
of computer crashes,

11.5 Fragmentation on a storage device could be eliminated by recom-
paction of the information. Typical disk devices do not have relocation
or base registers (such as are used when memory is to be compacted),
so how can we relocate files? Give three reasons why recompacting and
relocation of files are often avoided.

11.6 In what situations would using memory as a RAM disk be more useful
than using it as a disk cache?

11.7 Explain why logging metadata updates ensures recovery of a file
systemn after a file-system crash.

118 Consider the following backup scheme:
* Day 1. Copy to a backup medium all files from the disk.
¢ Day 2. Copy to another medium all files changed since day 1.
¢ Day 3. Copy to another medium all files changed since day 1.

This differs from the schedule given in Section 11.7.2 by having all
subsequent backups copy all files modified since the first full backup.
What are the benefits of this system over the one in Section 11.7.2?
What are the drawbacks? Are restore operations made easier or more
difficult? Explain your answer.

The MS-DOS FAT systemn was explained in Norton and Wilton [1988], and the
05/2 description can be found in Iacobucci [1988]. These operating systems
use the Intel 8086 (Intel [1985b], Inte] [1985a], Intel [1986], Intel [1990]) CPUSs.
IBM allocation methods were described in Deitel [1990]. The internals of the
BSD UNIX system were covered in full in McKusick et al. [1996]. McVoy and
Kleiman {1991] presented optimizations of these methods made in Solaris.

Disk file allocation based on the buddy system was discussed by Koch
[1987]. A file-organization scheme that guarantees retrieval in one access was
discussed by Larson and Kajla {1984]. Log-structured file organizations for
enhancing both performance and consistency were discussed in Rosenblum
and Qusterhout [1991], Seltzer et al. [1993], and Seltzer et al. [1995].

Disk caching was discussed by McKeon {1985] and Smith [1985]. Caching
in the experimental Sprite operating system was described in Nelson et al.
[1988]. General discussions concerning mass-storage techinology were offered
by Chi [1982] and Hoagland [1985]. Folk and Zoellick [1987] covered the gamut
of file structures. Silvers [2000] discussed implementing the page cache in the
NetBSD operating system.

The network file system (NFS) was discussed in Sandberg et al. [1985],
Sandberg [1987], Sun [1990], and Callaghan [2000]. The characteristics of
workloads in distributed file systems were studied in Baker et al. [1991].
Qusterhout [1991] discussed the role of distributed state in networked file
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systems. Log-structured designs for networked file systems were proposed in
Hartman and Qusterhout {1995] and Thekkath et al. [1997]. NFS and the UNIX
file system (UFS) were described in Vahalia [1996] and Mauro and MecDougall
[2001]. The Windows NT file system, NTFS, was explained in Solomon [1998].
The Ext?2 file system used in Linux was described in Bovet and Cesati [2002]
and the WAFL file system in Hitz et al, [1995].
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CHAPTER

The file system can be viewed logically as consisting of three parts. In Chapter
10, we saw the user and programmer interface to the file system. In Chapter 11,
we described the internal data structures and algorithms used by the operating
system to implement this interface. In this chapter, we discuss the lowest
level of the file system: the secondary and tertiary storage structures. We first
describe the physical structure of magenetic disks and magnetic tapes. We
then describe disk-scheduling algorithms that schedule the order of disk 1,0
to improve performance. Next, we discuss disk formatting and management
of boot blocks, damaged blocks, and swap space. We then examine secondary
storage structure, covering disk reliability and stable-storage implementation.
We conclude with a brief description of tertiary storage devices and the
problems that arise when an operating system uses tertiary storage,

In this section we present a general overview of the physical structire of
secondary and tertiary storage devices.

12.1.1 Magnetic Disks

Magnetic disks provide the bulk of secondary storage for modern computer
systems. Conceptually, disks are relatively simple (Figure 12.1). Each disk
platter has a flat circular shape, like a CD. Common platter diameters range
from 1.8 to 5.25 inches. The two surfaces of a platter are covered with a ma gnetic
material. We store information by recording it magnetically on the platters,

A read-write head “flies” just above each surface of every platter. The
heads are attached to a disk arm that moves all the heads as a unit. The surface
of a platter is logically divided into circular tracks, which are subdivided into
sectors. The set of tracks that are at one arm position makes up a cylinder.
There may be thousands of concentric cylinders in a disk drive, and each track
may contain hundreds of sectors. The storage capacity of commuon disk drives
is measured in gigabytes.

When the disk is in use, a drive motor spins it at high specd. Most drives
rotate 60 'o 200 times per second. Disk speed has two part. |he transfer
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Figure 12.1 Moving-head disk mechanism.

rate is the rate at which data flow between the drive and the computer. The
positioning time, sometimes called the random-access time, consists of the
time to move the disk arm to the desired cylinder, called the seek time, and
the time for the desired sector to rotate to the disk head, called the rotational
tatency. Typical disks can transfer several megabytes of data per second, and
chev have seek times and rotational latencies of several milliseconds.

Because the disk head flies on an extremely thin cushion of air (measured
in microns), there is a danger that the head will make contact with the disk
surtace. Although the disk platters are coated with a thin protective layer,
sometimes the head will damage the magnetic surface. This accident is called
A head crash. A head crash normally cannot be repaired; the entire disk must
be replaced.

A disk can be removable, allowing different disks to be mounted as needed.
Removable magnetic disks generally consist of one platter, held in a plastic case
to prevent damage while not in the disk drive. Floppy disks are inexpensive
removable magnetic disks thai have a soft plastic case containing a flexible
platter. The head of a floppy-disk drive generally sits directly on the disk
surface, so the drive is designed to rotate more slowly than a hard-disk drive
to reduce the wear on the disk surface. The storage capacity of a floppy disk
is typically cnly 1.44 MB or so. Removable disks are available that work much
like normal hard disks and have capacities measured in gigabytes.

A disk drive is attached to a computer by a set of wires called an 1/0
bus. Several kinds of buses are available, including enhanced integrated
drive electronics (EIDE), advanced technology attachment {ATA), serial ATA
{SATA), universal serial bus (USB), fiber channel (FC), and SCSI buses. The
data transfers on a bus are carried out by special electronic processors called
controtlers. The host controller is the controller at the computer end of the
bus. A disk controller is built into each disk drive. To perform a disk 1/0
operation, the computer places a command into the host controller, typically
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using memory-mapped 1/O ports, as described in Section 9.7.3. The host
controller then sends the command via messages to the disk controller, and the
disk controller operates the disk-drive hardware to carry out the command.
Disk controllers usually have a built-in cache. Data transfer at the disk drive
happens between the cache and the disk surface, and data transfer to the host,
at fast electronic speeds, occurs between the ~ache and the host controller.

12.1.2 Magnetic Tapes

Magnetic tape was used as an early secondary-storage medium. Although it
is relatively permanent and can hold large quantities of data, its access time
is slow compared with that of main memory and magnetic disk. In addition,
random access to magnetic tape is about a thousand times stower than random
access to magnetic disk, so tapes are not very uscful for secondary storage.
Tapes are used mainly for backup, for storage of infrequently used information,
and as a medium for transferring information from one system to another.

A tape is kept in a spool and is wound or rewound past a read —write head.
Moving to the correct spot on a tape can take minutes, but once positioned,
tape drives can write data at speeds comparable to disk drives. Tape capacities
vary greatly, depending on the particular kind of tape drive. Typically, they
store from 20 GB to 200 GB. Some have built-in compression that can more than
double the effective storage. Tapes and their drivers are usually categorized
by width, including 4, 8, and 19 millimeters and 1/4 and 1/2 inch. Some are
named according to technology, such as LTO-2 and SDLT. Tape storage is further
described in Section 12.9.

Modern disk drives are addressed as large one-dimensional arrays of logical
blocks, where the Togical block is the smallest unit of transfer. The size of
a logical block is usually 512 bytes, although some disks can be low-level
formatted to have a different logical block size, such as 1,024 bytes. This option
is described in Section 12.5.1. The one-dimensional array of logical blocks is
mapped onto the sectors of the disk sequentially. Sector ¢ is the first sector
of the first track on the outermost cylinder. The mapping proceeds in order
through that track, then through the rest of the tracks in that cylinder, and then
through the rest of the cylinders from outermost to innermost.

By using this mapping, we can—at least in theory—convert a logical block
number into an old-style disk address that consists of acylinder number, a track
number within that cylinder, and a sector number within that track. In practice,
it is difficult to perform this translation, for two reasons. First, most disks have
some defective sectors, but the mapping hides this by substituting spare sectors
from elsewhere on the disk. Second, the number of sectors per track is not a
constant on some drives.

Let’s louk more closely at the second reason. On media that use constant
linear velocity (CLV), the density of bits per track is uniform. The farther a track
is from the center of the disk, the greater its length, so the more sectors it can
hold. As we move from outer zones to inner zones, the number of sectors per
track decreases. Tracks in the outermost zone typically hold 40 percent more



438

12.3

Chapter 12

sectors than do tracks in the innermost zone. The drive increases its rotation
speed as the head moves from the outer to the inner tracks to keep the same rate
of data moving under the head. This method is used in CD-ROM and DVD-ROM
drives. Alternatively, the disk rotation speed can stay constant, and the density
of bits decreases from inner tracks to outer tracks to keep the data rate constant.
This method is used in hard disks and is known as constant angular velocity
{CAV).

The number of sectors per track has been increasing as disk technology
improves, and the outer zone of a disk usually has several hundred sectors per
track. Similarly, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.

Computers access disk storage in two ways. One way is via 1/0 ports (or
host-attached storage); this is common on small systems. The other way is via
aremote host in a distributed file system; this is referred to as network-attached
storage.

12.3.1 Host-Attached Storage

Host-attached storage is storage accessed through local 1/0 ports. These ports
use several technologies. The typical desktop PC uses an 1/0 bus architecture
called 1DE or ATA. This architecture supports a maximum of two drives per 1,0
bus. A newer, similar protocol that has simplified cabling is SATA. tligh-end
workstations and servers generally use more sophisticated 170 architectures,
such as 5CS1 and fiber channel (FC).

5CSl is a bus architecture. Its physical medium is usuaily a ribbon cable
having a large number of conductors (typically 50 or 68). The SCSI protocol
supports a maximum of 16 devices on the bus. Generally, the devices include
one controller card in the host (the $CSI initiator) and up to 15 storage devices
(the SCSI targets). A SCs! disk is a common SCSl target, but the protocol provides
the ability to address up to 8 logical units in each SCSI target. A typical use of
logical unit addressing is to direct commands to components of a RAID array
or components of a removable media library (such as a CD jukebox sending
commands to the media-changer mechanism or to one of the drives).

FC is a high-speed serial architecture that can operate over optical fiber or
over a four-conductor coppet cable. It has two variants. One is a large switched
fabric having a 24-bit address space. This variant is expected to dominate
in the future and is the basis of storage-aiea networks (SANs), discussed in
Section 12.3.3. Because of the large address space and the switched nature of
the communication, multiple hosts and storage devices can attach to the fabric,
allowing great flexibility in 1/0 communication. The other FC variant is an
arbitrated loop (FC-AL) that can address 126 devices (drives and controllers).

A wide variety of storage devices are suitable for use as Fout-attached
storage. Among these are hard disk drives, RAID arrays, and CD, DVD, and
tape drives. The I/0 commands that initiate data transfers to a host-attached
storage device are reads and writes 8f logical data blocks directed to specificall v
identified storage units (such as bus ID, SCS1 1D, and target logical unit).
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12.3.2 Network-Attached Storage

A network-attached storage (NAS) device is a special-purpose storage system
that is accessed remotely over a data network (Figure 12.2). Clients access
network-attached storage via a remote-procedure-calt interface such as NFS
for UNIX systems or CIFS for Windows machines. The remote procedure calls
(RPCs) are carried via TCP or UDP over an IP network—usually the same
local-area network (LAN) that carries all data traffic to the clients. The network-
attached storage unit is usually implemented as a RAID array with software that
implements the RPC interface. It is easiest to think of NAS as simply another
storage-access protocol. For example, rather than using a 5CS51 device driver
and SC8l protocols to access storage, a system using NAS would use RPC over
TCP/IP.

Network-attached storage provides a convenient way for all the computers
on a LAN to share a pool of storage with the same ease of naming and access
enjoyed with local host-attached storage. However, it tends to be less efficient
and have lower performance than some direct-attached storage options.

ISCSI is the latest network-attached storage protocol. In essence, it uses
the 1P network protocol to carry the SCSt protocol. Thus, networks rather than
5¢8l cables can be used as the interconnects between hosts and their storage.
As a result, hosts can treat their storage as if it were directly attached, but the
storage can be distant from the host.

12.3.3 Storage-Area Network

One drawback of network-attached storage systems is that the storage 1/0
operations consume bandwidth on the data network, thereby increasing the
fatency of network communication. This problem can be particularly acute
in large client~server installations— the communication between servers and
clients competes for bandwidth with the communication among servers and
storage devices.

A storage-area network (SAN) is a private network (using storage protocols
rather than netwarking protocols) connecting servers and storage units, as
shown in Figure 12.3. The power of a SAN lies in its flexibility. Multiple hosts
and multiple storage arrays can attach to the same SAN, and storage can
be dynamically allocated to hosts. A SAN switch allows or prohibits access
between the hosts and the storage. As one example, if a host is running low
on disk space, the SAN can be configured to allocate more storage to that host.
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Figure 12.3 Storage-area network.

SANs make it possible for clusters of servers to share the same storage and
for storage arrays to include multiple direct host connections. SANs typically
have more ports, and less expensive ports, than storage arrays. FC is the most
common SAN interconnect.

An emerging alternative is a special-purpose bus architecture named
InfiniBand, which provides hardware and software support for high-speed
interconnection networks for servers and storage units.

One of the responsibilities of the operating system is to use the hardware
efficiently. For the disk drives, meeting this responsibility entails having
fast access time and large disk bandwidth. The access time has two major
components {also see Section 12.1,1). The seek time is the time for the disk arm
to move the heads to the cylinder containing the desired sector. The rotational
latency is the additional time for the disk to rotate the desired sector to the disk
head. The disk bandwidth is the total number of bytes transferred, divided
by the total time between the first request for service and the completion of
the last transfer. We can improve both the access time and the bandwidth by
scheduling the servicing of disk 1/0 requests in a good order.

Whenever a process needs 170 to or from the disk, it issues a system call to
the operating system. The request specifies several pieces of information:

Whether this operation is input or output

What the disk address for the transfer is -

What the memory address for the transfer is

What the number of sectors to be transferred is

If the desired disk drive and controller are available, the request can be

serviced immediately. If the drive or controller is busy, any new requests
for service will be placed in the queue of pending requests for that drive.
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Figure 12.4 FCFS disk scheduling.

For a multiprogramming system with many processes, the disk queue may
often have several pending requests. Thus, when one request is completed, the
operating system chooses which pending request to service next. How does
the operating system make this choice? Any one of several disk-scheduling
algorithms can be used, and we discuss them next.

12.4.1 FCFS Scheduling

The simplest form of disk scheduling is, of course, the first-come, first-served
(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not
provide the fastest service. Consider, for example, a disk queue with requests
for 1/0 to blocks on cylinders

98, 183, 37, 122, 14, 124, 65, 67,

in that order. If the disk head is initially at cylinder 53, it will first move from
53 to 98, then to 183, 37, 122, 14, 124, 65, and finally to 67, for a total head
movement of 640 cylinders. This schedule is diagrammed in Figure 12.4.

The wild swing from 122 to 14 and then back to 124 illustrates the problem
with this schedule. If the requests for cylinders 37 and 14 could be serviced
together, before or after the requests at 122 and 124, the total head movement
could be decreased substantially, and performance could be thereby improved.

-~ ¥
12.4.2 SSTF Scheduling @@/\

wt seems reasonable to service all the requests close to the current head position
// before moving the head far away to service other requests. This assumption is
the basis for the shortest-seek-time-first (SSTF) algorithm. The SSTF algorithm
selects the request with the minimum seek time from the current head position.
Since seek time increases with the number of cylinders traversed by the head,
SSTF chooses the pending request closest to the current head position.

For our example request queue, the closest request to the initial head
position (53) is at cylinder 65. Once we are at cylinder 65, the next closest
request is at cylinder 67. From there, the request at cylinder 37 is closer than the
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Figure 12.5 SSTF disk scheduling.

one at 98, 50 37 is served next. Continuing, we service the request at cylinder 14,
then 98, 122,124, and finally 183 (Figure 12.5). This scheuling method results
in a total head movement of only 236 cylinders—little more than one-third of
the distance needed for FCFS scheduling of this request queue. This algorithm
gives a substantial improvement in performance.

SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling;
and like SJF scheduling, it may cause starvation of some requests. Remember
that requests may arrive at any time. Suppose that we have two requests in
the queue, for cylinders 14 and 186, and while servicing the request from 14,
a new request near 14 arrives. This new request will be serviced next, making
the request at 186 wait. While this request is being serviced, another request
close to 14 could arrive. In theory, a continual stream of requests near one
another could arrive, causing the request for cylinder 186 to wait indefinitely:
This scenario becomes increasingly likely if the pending-request queue grows
long.

Although the SSTF algorithm is a substantial improvement over the FCFS
algorithm, it is not optimal. In the example, we can do better by moving the
head from 53 to 37, even though the latter is not closest, and then to 14, before
turning around to service 65, 67, 98, 122, 124, and 183. This strategy reduces
the total head movement to 208 cylinders.

12.4.3 SCAN Scheduling /
In the SCAN algorithm, the disk arm starts at one end of the disk and moves
toward the other end, servicing requests as it reaches each cylinder, until it gets
to the other end of the disk. At the other end, the direction of head movement
is reversed, and servicing continues. The head continuously scans back and
forth across the disk. The SCAN algorithm is sometimes called the elevator
algorithm, since the disk arm behaves just like an elevator in a building, first
servicing all the requests going up and then reversing to service requests the
other way.

Let’s return to our example to illustrate. Before applying SCAN to schedule
the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know
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Figure 12.6 SCAN disk scheduling.

the direction of head movement in addition to the head’s current position (53).
If the disk arm is moving toward 0, the head will service 37 and then 14. At
cylinder 0, the arm will reverse and will move toward the other end of the
disk, servicing the requests at 63, 67, 98, 122, 124, and 183 (Figure 12.6). If a
request arrives in the queue just in front of the head, it will be serviced almost
immediately; a request arriving just behind the head will have to wait until the
arm moves to the end of the disk, reverses direction, and comes back.

Assuming a uniform distribution of requests for cylinders, consider the
density of requests when the head reaches one end and reverses direction. At
this point, relatively few requests are immediately in front of the head, since
these cylinders have recently been serviced. The heaviest density of requests
is at the other end of the disk. These requests have also waited the longest, so
why not go there first? That is the idea of the next algerithm.

12.4.4 C-SCAN Scheduling

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide
a more uniform wait time. Like SCAN, C-SCAN moves the head from one end
of the disk to the other, servicing requests along the way. When the head
reaches the other end, however, it immediately returns to the beginning of
the disk, without servicing any requests on the return trip (Figure 12.7). The
C-5CAN scheduling algorithm essentially treats the cylinders as a circular kst
that wraps around from the final cylinder to the first one.

12.4.5 LOOK Scheduling

As we described them, both SCAN and C-SCAN move the disk arm across the
full width of the disk. In practice, neither algorithm is often implemented this
way. More commonly, the arm goes only as far as the final request in each
direction. Then, it reverses direction immediately, without going all the way to
the end of the disk. Versions of SCAN and C-SCAN that follow this pattern are
called LOOK and C-LOOK scheduling, because they look for a request before
continuing to move in a given direction (Figure 12.8).
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Figure 12.7 C-SCAN disk scheduling.

12.4.6 Selection of a Disk-Scheduling Algorithm

Given so many disk-scheduling algorithms, how do we choose the best one?
8STF is common and has a natural appeal because it increases performance over
FCFS. SCAN and C-SCAN perform better for systems that place a heavy load on
the disk, because they are less likely to cause a starvation problem. For any
particular list of requests, we can define an optimal order of retrieval, but the
computation needed to find an optimal schedule may not justify the savings
over SSTF or SCAN. With any scheduling algorithm, however, performance
depends heavily on the number and types of requests. For instance, suppose
that the queue usually has just one outstanding request. Then, all scheduling
algorithms behave the same, because they have only one choice for where t
move the disk head: They all behave like FCFS scheduling.

Requests for disk service can be greatly influenced by the file-allocatior.
method. A program reading a contiguously allocated file will generate several

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
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Figure 12.8 C-LOOK disk scheduling.
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requests that are close together on the disk, resulting in limited head movement.
A linked or indexed file, in contrast, may include blocks that are widelv
scattered on the disk, resulting in greater head movement.

The location of directories and index blocks is also important. Since every
file must be opened to be used, and opening a file requires searching the
directory structure, the directories will be accessed frequently. Suppose that a
directory entry is on the first cylinder and a file’s data are on the final cylinder.
In this case, the disk head has to move the entire width of the disk. If the
directory entry were on the middle cylinder, the head would have to move,
at most, one-half the width. Caching the directories and index blocks in main
memory can also help to reduce the disk-arm movement, particularly for read
requests.

Because of these complexities, the disk-scheduling algorithm should be
written as a separate module of the operating system, so that it can be replaced
with a different algorithm if necessary. Either SSTF or 100K is a reasonable
choice for the default algorithm.

The scheduling algorithms described here consider only the seek distances
For modern disks, the rotational latency can be nearlv as large as the
average seek time. It is difficult for the operating system to schedule for
improved rotational latency, though, because modern disks do not disclose the
physical location of logical blacks. Disk manufacturers have been atlev iating
this problem by implementing disk-scheduling algorithms in the contr ollu
hardware built into the disk drive. If the operating system sends a batch of
requests to the controller, the controller can queue them and then schedule
them to improve both the seek time and the rotational latency.

If 170 performance were the only consideration, the operating system
would gladly turn over the responsibility of disk scheduling to the disk hard-
ware. In practice, however, the operating system may have other constraints on
the service order for requests. For instance, demand paging may take priority
over application 1/0, and writes are more urgent than reads if the cache is
running out of free pages. Also, it may be desirable to guarantee the order of a
set of disk writes to make the file svstem robust in the face of system crashes.
Consider what could happen if the operating system allocated a disk page to a
file and the application wrote data into that page before the operating system
had a chance to flush the modified inode and free-space list back to disk. To
accommodate such requirements, an operating system may choose to do its
own disk scheduling and to spoon-feed the requests to the disk controller, one
by one, for some types of 1/0.

The operating system is responsible for several other aspects of disk manage-
ment, too. Here we discuss disk initialization, booting from disk, and bad-block
recovery.

12.5.1 Disk Formatting

A new magnetic disk is a blank slate: Tt is just a platter of a magnetic recording
material. Before a disk can store data, it must be divided into sectors that the
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disk controller can read and write. This process is called low-level for

or physical formatting. Low-level formatting fills the disk with a spec
structure for each sector. The data structure for a sector typically consis
header, a data area {usually 512 bytes in size), and a trailer. The heade,
trailer contain information used by the disk controller, such as a sector nun
and an error-correcting code (ECC). When the controller writes a sector of «
during normal 1/C, the ECC is updated with a value calculated from all .
bytes in the data area. ¥ 'hen the sector is read, the ECC is recalculated a
is compared with the stored value. If the stored and calculated numbers a
different, this mismatch indicates that the data area of the sector has becom.
corrupted and that the disk sector may be bad (Section 12.5.3). The ECC is an
error-correcting code because it contains enough information that, if only a few
bits of data have been corrupted, the controller can identify which bits have
changed and can calculate what their correct values snould be. It then reports
a recoverable soft error. The controller automatically does the ECC processing
whenever a sector is read or written.

Most hard disks are low-level-formatted at the factory as a part of the
manufacturing process. This formatting enables the manufacturer to test the
disk and to initialize the mapping from logical block numbers to defect-free
sectors on the disk. For many hard disks, when the disk controller is instructed
to low-level-format the disk, it can also be told how many bytes of data space
to leave between the header and trailer of all sectors. It is usually possible to
choose among a few sizes, such as 256, 512, and 1,024 bytes. Formatting a disk
with a larger sector size means that fewer sectors can fit on each track; but it
also means that fewer headers and trailers are written on each track and mare
space is available for user data. Some operating systems can handle only a
sector size of 512 bytes.

To use a disk to hold files, the operating system still needs to record its own
data structures on the disk. It does so in two steps. The first step is to partition
the disk into one or more groups of cylinders. The operating system can treat
each partition as though it were a separate disk. For instance, one partition can
hold a copy of the operating system’s executable code, while another holds
user files. After partitioning, the second step is logical formatting (or creation
of a file system). In this step, the operating system stores the initial file-system
data structures onto the disk. These data structures may include maps of free
and allocated space {a FAT or inodes) and an initial empty directory.

To ircrease efficiency, most file systems group blocks together into larger
chunks, frequently called clusters. Disk 1/0 is done via blocks, but file system
1/¢vis done via clusters, effectively assuring that [/Ohas more sequential-access
and fewer random-access characteristics.

Some operating systems give special programs the ability to use a disk
partition as a large sequential array of logical blocks, without any file-system
data structures. This array is sometimes called the raw disk, and I/O to this array
is termed raw 1/0. For example, some database systems prefer raw 1/0 because
it enables them to control the exact disk location where each database record is
stored. Raw 1/0 bypasses all the file-system services, such as the buffer cache,
fileglocking, prefetching, space allocation, file names, and directories. We can
maKe certain applications more efficient by allowing them to implement their
own special-purpose storage services on a raw partition, but most applications
perform better when they use the regular file-system services.
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12.5.2 Boot Block

For a computer to start running—for instance, when it is powered up or
rebooted —it must have an initial program to run. This initial bootstrap program
tends to be simple. It initializes all aspects of the system, from CPU registers
to device controllers and the contents of main memory, and then starts the
operating system. To do its job, the bootstrap program finds the operating-
system kernel on disk, loads that kernel into memory, and jumps to an initial
address to begin the operating-system execution.

For most computers, the bootstrap is stored in read-only memory (ROM).
This location is convenient, because ROM needs no initialization and is at a fixed
location that the processor can start executing when powered up or reset. And,
since ROM is read only, it cannot be infected by a computer virus. The problem is
that changing this bootstrap code requires changing the ROM hardware chips.
For this reason, most systems store a tiny bootstrap loader program in the boot
ROM whose only job is to bring in a full bootstrap program from disk. The
full bootstrap program can be changed easily: A new version is simply written
onto the disk. The full bootstrap program is stored in “the boot blocks™ at a
fixed location on the disk. A disk that has a boot partition is called a boot disk
or system disk.

The code in the boot ROM instructs the disk controller to read the boot
blocks into memory (no device drivers are loaded at this point) and then starts
executing that code. The full bootstrap program is more sophisticated than the
bootstrap loader in the boot ROM; it is able to load the entire operating system
from a non-fixed location on disk and to start the operating system running.
Even so, the full bootstrap code may be small.

Let’s consider as an example the boot process in Windows 2000. The
Windows 2000 system places its boot code in the first sector on the hard disk
(which it terms the master boot record, or MBR). Furthermore, Windows 2000
allows a hard disk to be divided into one or more partitions; one partition,
identified as the boot partition, contains the operating system and device
drivers. Booting begins in a Windows 2000 system by running code that is
resident in the system’s ROM memory. This code directs the system to read the
boot cade from the MBR. Tn addition to containing boot code, the MBR contains
a table listing the partitions for the hard disk and a flag indicating which
partition the system is to be booted from. This is illustrated in Figure 12.9.

- boot
MBR code

partition 1 N partition
N table

partition 2

boot partition

partition 3

partition 4

Figure 12.9 Booting from disk in Windows 2000.
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Once the system identifies the boot partition, it reads the first sector from that
partition (which is called the boot sector) and continues with the remainder of
the boot process, which includes loading the various subsystems and system
S€rVIces,

12.5.3 Bad Blocks

Because disks have moving parts and smalt tolerances (recall that the disk
head flies just above the disk surface), they are prone to failure. Sometimes the
failure is complete; in this case, the disk needs to be replaced and its contents
restored from backup media to the new disk. More frequently, oene or more
sectors become defective. Most disks even come from the factory with bad
blocks. Depending on the disk and controller in use, these blocks are handled
in a variety of ways.

On simple disks, such as some disks with IDE controllers, bad blocks are
handted manually For instance, the MS-DOS format command performs logical
formatting and, ag a part of the process, scans the disk to find bad blocks. If
format finds a bad block, it writes a special value into the corresponding FAT
entry to tell the allocation routines not to use that block. If blocks go bad during
normal operation, a special program (such as chkdsk) must be run manually
to search for the bad blocks and to lock them away as before. Data that resided
on the bad blocks usually are lost.

ore sophisticated disks, such as the 5CSI disks used in high-end PCs
and kost workstations and servers, are smarter about bad-block recoveryXThe
controller maintains a list of bad blocks on the diskYThe list is initialized ddting
the low-level formatting at the factory and is upddted over the life of the disk.
Low-level formatting also sets aside spare sectors not visible to the operating
system, éﬁ controller can be told to replace each bad sector logically with one
of the spate sectors. This scheme is known as sector sparing or forwarding. ™

A typical bad-sector transaction might be as follows:

e operating system tries to read logical block 87.

The controller calcutates the ECC and finds that the scctor is bad. Tt reports
this finding to the operating system.

The next time the system is rebooted, a special command is run to tell the
SCSIcontroller to replace the bad sector with a spare.

After that, whenever the system requests logical block 87, the request is
translated into the replacement sector’s address by the controlter.

Such a redirection by the controller could invalidate any optimization by
the operating system’s disk-scheduling algorithm! For this reason, most disks
are formatted to provide a few spare sectors in each cylinder and a spare
cylinder as well. When a bad block is remapped, the controller uses a spare
sector from the same cylinder, if possible.

As an alternative to sector sparin;,%)mo controllers can be instructed to

replace a bad block by sector slippingy Here is an example: Suppose that
logicat-block 17 becomes defective and tHe first available spare follows sector
202. Then, sector slipping remaps all the sectors from 17 to 202, moving them
all down one spot. That is, sector 202 is copied into the spare, then sector 201
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into 202, and then 200 into 201, and so on, until sector 18 is copied into sector
19. Slipping the sectors in this way frees up the space of sector 18, so sector 17
can be mapped to it.

The replacement of a bad block generally is not totally automatic because
the data in the bad block are usually lost. Several soft errors could trigger a
process in which a copy of the block data is made and the block is spared or
slipped. An unrecoverable hard error, however, results in lost data. Whatever
file was-using that block must be repaired (for instance, by restoration from a
backup tape), and that requires manual intervention.

e e

Swapping was first presented in Section 8.2, where we discussed moving
entire processes between disk and main memory. Swapping in that setting
occurs when the amount of physical memory reaches a critically low point
and processes (which are usually selected because they are the least active) are
moved from memory to swap space to free available memory. In practice, very
few modern operating systems implement swapping in this fashion. Rather,
systems now combine swapping with virtual memory techniques (Chapter 9)
and swap pages, not necessarily entire processes. In fact, some systems now
use the terms swapping and paging interchangeably, reflecting the merging of
these two concepts.

Swap-space management is another low-level task of the operating
system. Virtual memory uses disk space as an extension of main memory.
Since disk access is much slower than memory access, using swap space
significantly decreases system performance. The main goal for the design and
implementation of swap space is to provide the best throughput for the virtual
memory system. In this section, we aiscuss how swap space is used, where
swap space is located on disk, and how swap space is managed.

12.6.1 Swap-Space Use

Swap space is used in various ways by different operating systems, depending
on the memory-management algorithms in use. For instance, systems that
implement swapping may use swap space to hold an entire process image,
including the code and data segments. Paging systems may simply store pages
thathave been pushed out of main memory. The amount of swap space needed
on a system can therefore vary depending on the amount of physical memory,
the amount of virtual memory it is backing, and the way in which the virtyal
memory is used. It can range from a few megabytes of disk space to gigabytes.

Note that it may be safer to overestimate than to underestimate the amount
of swap space required, because if a system runs out of swap space it may be
forced to abort processes or may crash entirely. Overestimation wastes disk
space that could otherwise be used for files, but it does no other harm. Some
systems recommend the amount to be set aside for swap space. Solaris, for
example, suggests setting swap space equal to the amount by which virtual
memory exceeds pageable physical memory. Historically, Linux suggests
setling swap space to double the amount of physical memory, although most
Linux systems now use considerably less swap space. In fact, there is currently
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much debate in the Linux community about whether to set aside swap space
at all!

Some operating systems—including Linux—allow the use of multiple
swap spaces. These swap spaces are usually put on separate disks so the load
placed on the 1/0 system by paging and swapping can be spread over the
system’s 1/0 devices.

12.6.2 Swap-Space Location

A swap space can reside in one of two places: It can be carved out of the
normal file system, or it can be in a separate disk partition. [f the swap
space is simply a large file within the file system, normal file-system routines
can be used to create it, name it, and allocate its space. This approach,
though easy to implement, is inefficient. Navigating the directory structure
and the disk-allocation data structures takes time and {potentially} extra
disk accesses. External fragmentation can greatly increase swapping times by
forcing multiple seeks during reading or writing of a process image. We can
improve performance by caching the block location information in physical
memory and by using special tools to allocate physically contiguous blocks
for the swap file, but the cost of traversing the file-system data structures still
remains.

Alternatively, swap space can be created in a separate raw partition, as no
file system or directory structure is placed in this space. Rather, a separate
swap-space storage manager is used to allocate and deallocate the blocks
from the raw partition. This manager uses algorithms optimized for speed
rather than for storage efficiency, because swap space is accessed much more
frequently than file systems (when it is used). Internal fragmentation may
increase, but this trade-off is acceptable because the life of data in the swap
space generally is much shorter than that of files in the file system. Swap space
is reinitialized at boot time so any fragmentation is short-lived. This approach
creates a fixed amount of swap space during disk partitioning. Adding more
swap space requires repartitioning the disk {which involves moving the other
file-system partitions or destroying them and restoring them from backup} or
adding another swap space elsewhere.

Some operating systems are flexible and can swap both in raw partitions
and in file-systemn space. Linux is an example: The policy and implementation
are separate, allowing the machine’s administrator to decide which type of
swapping to use. The trade-off is between the convenience of allocation and
management in the file system and the performance of swapping in raw
partitions.

12.6.3 Swap-Space Management: An Example

We can illustrate how swap space is used by following the evolution of
swapping and paging in various UNIX systems. The traditional UNIX kernel
started with an implementation of swapping that copied entire processes
between contiguous disk regions and memory. UNIX later evolved to a
combination of swapping and paging as paging hardware became available.
In Solaris 1 (Sun0s), the designers changed standard UNIX methods to
improve efficiency and reflect technological changes. When a process executes,
text-segment pages containing code are brought in from the file system,
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Figure 12,10 The data structures for swapping on Linux systems.

accessed in main memory, and thrown away if selected for pageout. It is more
efficient to reread a page from the file system than to write it to swap space
and then reread it from there. Swap space is only used as a backing store for
pages of anonymous memory, which includes memory allocated for the stack,
heap, and uninitialized data of a process.

More changes were made in later versions of Solaris. The biggest change
is that Solaris now allocates swap space only when a page is forced out of
physical memory, rather than when the virtual memory page is first created.
This scheme gives better performance on modern computers, which have more
physical memory than older systems and tend to page less.

Linux is similar to Solaris in that swap space is only used for anonymous
memory or for regions of memory shared by several processes. Linux allows
one or more swap areas to be established. A swap area may be in either a
swap file on a regular file system or a raw swap partition. Each swap area
consists of a series of 4-KB page slots, which are used to hold swapped pages.
Associated with each swap area is a swap map—an array of integer counters,
each corresponding to a page slot in the swap area. If the value of a counter is 0,
the corresponding page slot is available. Values greater than 0 indicate that the
page slot is occupied by a swapped page. The value of the counter indicates the
number of mappings to the swapped page; for example, a value of 3 indicates
that the swapped page is mapped to three different processes (which can occur
if the swapped page is storing a region of memory shared by three processes).
The data structures for swapping on Linux systems are shown in Figure 12.10.

'“':'éf.-*w;%iu..,:? P TR

Disk drives have continued to get smaller and cheaper, so it is now econom-
ically feasible to attach many disks to a computer system. Having a large
number of disks in a system presents opportunities for improving the rate
at which data can be read or written, if the disks are operated in paralilel.
Furthermore, this setup offers the potential for improving the reliability of data
storage, because redundant information can be stored on multiple disks. Thus,
failure of one disk does not lead to loss of data. A variety of disk-organization
techniques, collectively called redundant arrays of inexpensive disks (RAIDs),
are commonly used to address the performance and reliability issues.

In the past, RAIDs composed of small, cheap disks were viewed as a
cost-effective alternative to large, expensive disks; today, RAIDs are used for
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their higher reliability and higher data-transfer rate, rather than for economic
reasons. Hence, the 1 in RAID now stands for “independent” instead of
“inexpensive.”

12.7.1 Improvement of Reliability via Redundancy

Let us first consider the reliability of RAIDs. The chance that some disk out of
a set of N disks will fail is much higher than the chance that a specific single
Aisk will fail. Suppose that the mean time to failure of a single disk is 100,600
hours. Then the mean time to failure of some disk in an aicay ot 100 disks
will be 100,000/100 = 1,000 hours, or 41.66 days, which is not long at all! If we
store only one copy of the data, then each disk failure will result in loss of a
significant amount of data—and such a high rate of data loss is unacceptabie.

he solution to the problem of reliability is to introduce redundancy; we
store extra information that is not normally needed but that can be used in the
event of failure of a disk to rebuild the lost information. Thus, even if a disk
fails, data are not lost.

The simplest {but most expensive) approach to introducing redundancy is
to duplicate every disk. This technique is called mirroring. A logical disk then
consists of two physical disks, and every write is carried out on both disks. If
one of the disks fails, the data can be read from the other. Data will be lost only
if the second disk fails before the first failed disk is replaced.

The mean time to failure—where failure is the loss of data— of a mirrored
volume (made up of two disks, mirrored) depends on two factors. One is
the mean time to failure of the individual disks. The other is the mean time
to repair, which 1s the time it takes (on average) to replace a failed disk
and to restore the data on it. Suppose that the failures of the two disks are
independent; that is, the failure of one disk is not connected to the failure of
the other. Then, if the mean time to failure of a single disk is 100,000 hours and
the mean time to repair is 10 hours, the mean time to data loss of a mirrored
disk system is 100, 000%/(2 * 10) = 500 » 10° hours, or 57,000 years!

You should be aware that the assumption of independence of disk failures
is not valid. Power failures and natural disasters, such as earthquakes, fires,
and floods, may result in damage to both disks at the same time. Also,
manufacturing defects in a Laichi of disks can cause correlated failures. As
disks age, the probability of failure grows, increasing the chance that a second
disk will fail while the first is being repaired. Tn: spite of all these considerations,
however, mirrored-disk systems offer much higher reliability than de single-
disk systems.

Power failures are a particular source of concern, since they occur far more
frequently than do natural disasters. Even with mirroring of disks, if writes
are in progress to the same block in both disks, and power fails before both
blocks are fully written, the two blocks can be in an inconsistent state. One
solution to this problem is to write one copy first, then the next, so that one
of the two copies is always consistent. Another is to add a nonvolatile RAM
(NVRAM) cache to the RAID array. This write-back cache is protected from data
loss during power failures, so the write can be considered complete at that
point, assuming the NVRAM has some kind of error protection and correction,
such as ECC or mirroring.
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12.7.2 Improvement in Performance via Parallelism

Now let’s consider how parallel access to multiple disks improves perfor-
mance. With disk mirroring, the rate at which read requests can be handled is
doubled, since read requests can be sent {o either disk (as long as both disks
in a pair are functional, as is almost always the case). The transfer rate of each
read is the same as in a single-disk system, but the number of reads per unit
time has doubled.

With multiple disks, we can improve the transfer rate as well (or instead)
by striping data across the disks. In its simplest form, data striping consists
of splitting the bits of each byte across multiple disks; such striping is called
bit-level striping. For example, if we have an array of eight disks, we write bit
i of each byte to disk i. The array of eight disks can be treated as a single disk
with sectors that are eight times the normal size and, more important, that have
eight times the access rate. In such an organization, every disk participates in
every access (read or write); so the number of accesses that can be processed
per second is about the same as on a single disk, but each access can read eight
times as many data in the same time as on a single disk.

Bit-level striping can be generalized to include a number of disks that either
is a multiple of 8 or divides 8. For example, if we use an array of four disks,
bits i and 4 + i of each byte go to disk i. Further, striping need not be at the bit
level. For example, in block-level striping, blocks of a file are striped across
multiple disks; with # disks, block 7 of a file goes to disk (i mod n) + 1. Other
levels of striping, such as bytes of a sector or sectors of a block, alse are possible.
Block-level striping is the most common.

Parallelism in a disk system, as achieved through striping, has two main
goals:

Increase the throughput of multiple small accesses (that is, page accesses)
by load balancing.

Reduce the response time of large accesses.

12.7.3 RAID Levels

Mirroring provides high reliability, but it is expensive. Striping provides high
data-transfer rates, but it does not improve reliability. Numerous schemes to
provide redundancy at lower cost by using the idea of disk striping combined
with “parity” bits (which we describe next) have been proposed. These schemes
have different cost—performance trade-offs and are classified according to
levels called RAID levels. We describe the various levels-here; Figure 12.11
shows them pictorially (in the figure, P indicates error-correcting bits, and C
indicates a second copy of the data). In all cases depicted in the figure, four
disks” worth of data are stored, and the extra disks are used to store redundant
information for failure recovery.

RAID Level 0. RAID level O refers to disk arrays with striping at the level of
blocks but without any redundancy (such as mirroring or parity bits}, as
shown in Figure 12.11(a).
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Figure 12,11 RAID levels.

» RAID Level 1. RAID level 1 refers to disk mirroring. Figure 12.11(b) shows

a mirrored organization.

RAID Level 2. RAID level 2 is also known as memory-style error-correcting-
code (ECC) organization. Memory systems have Jong detected certain
errors by using parity bits. Each byte in a memory system may have a
parity bit associated with it that records whether the number of bits in the
byte set to 1 is even (parity = 0) or odd (parity = 1). If one of the bits in the
byte is damaged (either a 1 becomes a 0, or a ( becomes a 1), the parity of
the byte changes and thus will not match the stored parity. Similarly, if the
stored parity bit is damaged, it will not match the computed parity. Thus,
all single-bit errors are detected by the memory system. Error-correcting
schemes store two or more extra bits and can reconstruct the data if a
single bit is damaged. The idea of ECC can be used directly in disk arrays
via striping of bytes across disks. For example, the first bit of each byte can
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be stored in disk 1, the second bit in disk 2, and so on until the eighth bit
is stored in disk 8; the error-correction bits are stored in further disks. This
scheme is shown pictorially in Figure 12.11(c), where the disks labeled P
store the error-correction bits. If one of the disks fails, the remaining bits
of the byte and the associated error-correction bits can be read from other
disks and used to reconstruct the damaged data. Note that RAID level 2
requires only three disks” overhead for four disks of data, unlike RAID level
1, which requires four disks’ overhead.

RAID Level 3. RAID level 3, or bit-interleaved parity organization,
improves on level 2 by taking into account the fact that, unlike memory
systems, disk controllers can detect whether a sector has been read
correctly, so a single parity bit can be used for error correction as well
as for detection. The idea is as follows: If one of the sectors is damaged, we
know exactly which sector it is, and we can figure out whether any bit in
the sector is a 1 or a 0 by computing the parity of the corresponding bits
from sectors in the other disks. If the parity of the remaining bits is equal
to the stored parity, the missing bit is 0; otherwise, it is 1. RAID level 3 is as
good as level 2 but is less expensive in the number of extra disks required
{it has only a one-disk overhead), so level 2 is not used in practice. This
scheme is shown pictorially in Figure 12.11(d}.

RAID level 3 has two advantages over level 1. First, the storage over-
head is reduced because only one parity disk is needed for several regular
disks, whereas one mirror disk is needed for every disk in level 1. Second,
since reads and writes of a byte are spread out over multiple disks with
N-way striping of data, the transfer rate for reading or writing a single
block is N times as fast as with RAID level 1. On the negative side, RAID
level 3 supports fewer 1/0s per second, since every disk has to participate
in every /0 request.

A further performance problem with RAID 3—and with all parity-
based RAID levels—is the expense of computing and writing the parity.
This overhead results in significantly slower writes than with non-parity
RAID artays. To moderate this performance penalty, many RAID storage
arrays include a hardware controller with dedicated parity hardware. This
controller offloads the parity computation from the CPU to the array. The
array has an NVRAM cache as well, to store the blocks while the parity is
computed and to buffer the writes from the controller to the spindles. This
combination can make parity RAID almost as fast as non-parity. In fact, a
caching array doing parity RAID can outperform a non-caching non-parity
RAID.

RAID Level 4. RAID level 4, or block-interleaved parity organization, uses
block-level striping, as in RAID 0, and in addition keeps a parity block on a
separate disk for corresponding blocks from N other disks. This scheme is
diagramed in Figure 12.11(e). If one of the disks fails, the parity block can
be used with the corresponding blocks from the other disks to restore the
blocks of the failed disk.

A block read accesses only one disk, allowing other requests to be
processed by the other disks. Thus, the data-transfer rate for each access
is slower, but multiple read accesses can proceed in parallel, leading to a
higher overall 1/0 rate. The transfer rates for large reads are high, since all
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the disks can be read in parallel; large writes also have high transfer rates,
since the data and parity can be written in parallel.

Small independent writes cannot be performed in parallel. An operating
system write of data smaller than a block requires that the block be read,
modified with the new data, and written back. The parity block has to be
updated as well. This is known as the read-modify-write cycle. Thus, a
single write requires four disk accesses: two to read the two old blocks and
two to write the two new blocks.

WAFL {Chapter 11} uses RAID level 4 because this RAID level allows disks
to be added to a RAID set seamlessly. If the added disks are initialized with
blocks containing all zeros, then the parity value does not change, and the
RAID set is still correct.

RAID Level 5. RAID level 5, or block-interleaved distributed parity, differs
from level 4 by spreading data and parity among all N + 1 disks, rather
than storing data in N disks and parity in one disk. For each block, one of
the disks stores the parity, and the others store data. For example, with an
array of five disks, the parity for the nth block is stored in disk (2 mod 5)+1;
the nth blocks of the other four disks store actual data for that block. This
setup is shown in Figure 12.11(f), where the Ps are distributed across all
the disks. A parity block cannot store parity for,blocks in the same disk,
because a disk failure would result in loss of data as well as of parity, and
hence the loss would not be recoverable. By spreading the parity across all
the disks in the set, RAID 5 avoids the potential overuse of a single parity
disk that can occur with RAID 4. RAID 5 is the most common parity RAID
system.

RAID Level 6. RAID level 6, also called the P + Q redundancy scheme, is
much like RAID level 5 but stores extra redundant information to guard
against multiple disk failures. Instead of parity, error-correcting codes such
as the Reed—-Solomon codes are used. In the scheme shown in Figure
12.11(g), 2 bits of redundant data are stored for every 4 bits of data—
compared with 1 parity bit in level 5—and the system can tolerate two
disk failures.

RAID Level 0 + 1. RAID level 0 + 1 refers to a combination of RAID levels
0 and 1. RAID 0 provides the performance, while RAID 1 provides the
reliability. Generally, this level provides better performance than RAID 5.
It is common in environments where both performance and reliability
are important. Unfortunately, it doubles the number of disks needed for
storage, as does RAID 1, so it is also more expensive. In RAID 0 + 1, a set
of disks are striped, and then the stripe is mirrored to another, equivalent
stripe.

Another RAID option that is becoming available commercially is RAID
level 1 + 0, in which disks are mirrored in pairs, and then the resulting
mirror pairs are striped. This RAID has some theoretical advantages over
RAID 0 + 1. For example, if a single disk fails in RAID 0 + 1, the entire
stripe is inaccessible, leaving only the other stripe available. With a failure
in RAID 1 + 0, the single disk is unavailable, but its mirrored pair is still
available, as are all the rest of the disks (Figure 12.12).
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Numerous variations have been proposed to the basic RAID schemes described
here. As a result, some confusion may exist about the exact definitions of the
different RAID levels.

The implementation of RAID is another area of variation. Consider the
following layers at which RAID can be implemented.

Volume-management software can implement RAID within the kernel or
at the system software layer. In this case, the storage hardware can provide
a minimum of features and still be part of a full RAID solution. Parity RAID
is fairly slow when implemented in software, so typically RAID O, 1, or 0 +
1 is used.

RAID can be implemented in the host bus-adapter (HBA) hardware. Only
the disks directly connected to the HBA can be part of a given RAID set.
This solution is low in cost but not very flexible.

RAID can be implemented in the hardware of the storage array. The storage
array can create RAID sets of various levels and can even slice these sets
into smaller volumes, which are then presented to the operating system.
The operating system need only implement the file system on each of the
volumes. Arrays can have multiple connections available or can be part of
a SAN, allowing multiple hosts to take advantage of the array’s features.
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RAID can be implemented in the SAN interconnect layer by disk virtualiza-
tion devices. In this case, a device sits between the hosts and the storage.
It accepts commands from the servers and manages access to the storage.
It could provide mirroring, for example, by writing each block to two
separate storage devices.

Other features, such as snapshots and replication, can be implemented at
each of these levels as well. Replication involves the automatic duplication of
writes between separate sites for redundancy and disaster recovery. Replication
can be synchronous or asynchronous. In synchronous replication, each block
must be written locally and remotely before the wrile is considered complete,
whereas in asynchronous replication, the writes are grouped together and
written periodically. Asynchronous replication can result in data loss if the
primary site fails but is faster and has no distance limitations.

The implementation of these features differs depending on the layer at
which RAID is implemented. For example, if RAID is implemented in software,
then each host may need to implement and manage its own replication. If
replication is tmplemented in the storage array or in the SAN interconnect,
however, then whatever the host operating system or features, the hosts data
can be replicated.

One other aspect of most RAID implementations is a hot spare disk or disks.
A hot spare is not used for data but is configured to be used as a replacement
should any other disk fail. For instance, a hot spare can be used to rebuild a
mirrored pair should one of the disks in the pair fail. In this way, the RAID level
can be reestablished automatically, without waiting for the failed disk to be
replaced. Allocating more than one hot spare allows more than one failure to
be repaired without human intervention.

12.7.4 Selecting a RAID Level

Given the many choices they have, how do system designers choose a RAID
level? One consideration is rebuild performance. If a disk fails, the time needed
to rebuild its data can be significant and will vary with the RAID level used.
Rebuilding is easiest for RAID level 1, since data can be copied from another
disk; for the other levels, we need to access all the other disks in the array
to rebuild data in a failed disk. The rebuild performance of a RAID system
may be an important factor if a continuous supply of data is required, as it
is in high-performance or interactive database systems. Furthermore, rebuild
performance influences the mean time to failure. Rebuild times can be hours
for RAID 5 rebuilds of large disk sets.

RAID level 0 is used in high-performance applications where data loss is
not critical. RAID level 1 is popular for applications that require high reliability
with fast recovery. RAID 0 + 1 and 1 + 0 are used where both performance and
reliability are important—for example, for small databases. Due to RAID 1's
high space overhead, RAID level 5 is often preferred for storing large volumes
of data. Level 6 is not supported currently by many RAID implementations, but
it should offer better reliability than level 5.

RAID system designers and administrators of storage have to make several
other decisions as well. For example, how many disks should be in a given
RAID set? How many bits should be protected by each parity bit? If more disks
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are in an array, data-transfer rates are higher, but the system is more expensive.
If more bits are protected by a parity bit, the space overhead due to parity bits
is lower, but the chance that a second disk will fail before the first failed disk is
repaired is greater, and that will result in data loss.

12.7.5 Extensions

The concepts of RAID have been generalized to other storage devices, including
arrays of tapes, and even to the broadcast of data over witeless systems. When
applied to arrays of tapes, RAID structures are able to recover data even if one
of the tapes in an array is damaged. When applied to broadcast of data, a block
of data is split into short units and is breadcast along with a parity unit; if one
of the units is not received for any reason, it can be reconstructed from the
other units. Commonly, tape-drive robots containing multiple tape drives will
stripe data across all the drives to increase throughput and decrease backup
time.

12.7.6 Problems with RAID

Unfortunately, RAID does not always assure that data are available for the
operating system and its users. A pointer to a file could be wrong, for example,
ot pointers within the file structure could be wrong. Incomplete writes, if not
properly recovered, could result in corrupt data. Some other process could
accidentally write over a file system’s structures, too. RAID protects against
physical media errors, but not other hardware and software errors, As large as
the landscape of software and hardware bugs is, that is how numerous are the
potential perils for data on a system.

The Solaris ZFS file system takes an innovative approach to solving these
problems. It maintains internal checksums of all blocks, including data and
metadata. Added functionality comes in the placement of the checksums. They
are not kept with the block that is being checksummed. Rather, they are stored
with the pointer to that block. Consider an inode with pointers to its data.
Within the inode is the checksum of each block of data. If there is a problem
with the data, the checksum will be incorrect, and the file system will know
about it. [f the data are mirrored, and there is a block with a correct checksum
and one with an incorrect checksum, ZF$ will automatically update the bad
block with the good one. Likewise, the directory entry that points to the inode
has a checksum for the inode. Any problem in the inode is detected when
the directory is accessed. This checksumming takes places throughout all ZFS
structures, providing a much higher level of consistency, error detection, and
error correction than is found in RAID disk sets or standard file systems. The
extra overhead that is created by the checksum calculation and extra block
read-modify-write cycles is not noticeable because the overall performance of
ZFS is very fast.

In Chapter 6, we introduced the write-ahead log, which requires the availability
of stable storage. By definition, information residing in stable storage is never
lost. To implement such storage, we need to replicate the needed information
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on multiple storage devices (usually disks) with independent failure modes.
We need to coordinate the writing of updates in a way that guarantees that
a failure during an update will not leave all the copies in a damaged state
and that, when we are recovering from a failure, we can force all copies to -
consistent and correct value, even if another failure occurs during the recovern
In this section, we discuss how to meet these needs.

A disk write results in one of three outcomes:

Successful completion. The data were written correctly on disk.

Partial failure. A failure occurred in the midst of transfet, so only some of
the sectors were written with the new data, and the sector being written
during the failure may have been corrupted.

Total failure. The failure occurred before the disk write started, so the
previous data values on the disk remain intact.

Whenever a failure occurs during writing of a block, the system needs to
detect it and invoke a recovery procedure to restore the block to a consistent
state. To do that, the system must maintain two physical blocks for each logical
block. An output operation is executed as follows:

Write the information onto the first physical block.

When the first write completes successfully, write the same information
onto the second physical block.

Declare the operation complete only after the second write completes
successfully.

During recovery from a failure, each pair of physical blocks is examined.
If both are the same and no detectable error exists, then no further action is
necessary. If one block contains a detectable error, then we replace its contents
with the value of the other block. If neither block contains a detectable error,
but the blocks differ in content, then we replace the content of the first block
with that of the second. This recovery procedure ensures that a write to stable
storage either succeeds completely or results in no change.

We can extend this procedure easily to allow the use of an arbitrarily large
number of copies of each block of stable storage. Although having a large
number of copies further reduces the probability of a failure, it is usually
reasonable to simulate stable storage with only two copies. The data in stable
storage are guaranteed to be safe unless a failure destroys all the copies.

Because waiting for disk writes to complete (synchronous 1/0} is time
consuming, many storage arrays add NVRAM as a cache. Since the memory is
nonvolatile (usually it has battery power as a backup to the unit's power), it
can be trusted to store the data en route to the disks. It is thus considered part
of the stable storage. Writes to it are much faster than to disk, so performance
is greatly improved.

Would you buy a VCR that had inside it only one tape that you could not take
out or replace? Or a DVD or CD player that had one disk sealed inside? Of course
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rot. You expect to use a VCR or CD player with many relatively inexpensive
tapes or disks. On a computer as well, using many inexpensive cartridges with
one drive lowers the overall cost. Low cost is the defining characteristic of
terti_ary storage, which we discuss I this section.

12.9.1 'Tér‘tléry-&torage Devices

Because cost is sp important, in practice, tertiary storage is built with removable
media. The most common examples are floppy disks, tapes, and read-only,
write-once, and rewritable CDs and DvDs. Many any other kinds of tertiary-
storage devices are available as well, including removable devices that store
data in flash memory and interact with the computer system via a USB interface.

129.1.1 Remiovable Disks

Removable disks are one kind of tertiary storage. Floppy disks are an example

of removable magnetic disks. They are made from a thin, flexible disk coated

with magnetic material and enclosed in a protective plastic case. Although

~ common floppy disks can hold only about 1 MB, similar technology is used
for removable magnetic disks that hold more than 1 GB. Removable magnetic
disks can be nearly as fast as hard disks, although the recording surface is at
greater risk of damage from scratches.

A magneto-optic disk is another kind of removable disk. It records data
on a rigid platter coated with magnetic material, but the recording technology
is quite different from that for a magnetic disk. The magneto-optic head flies
much farther from the disk surface than a magnetic disk head does, and the
magnetic material is covered with a thick protective layer of plastic or glass.
This arrangement makes the disk much more resistant to head crashes.

The drive has a coil that produces a magnetic field; at room temperature,
the field is too large and too weak to magnetize a bit on the disk. To write a
bit, the disk head flashes a laser beam at the disk surface. The laser is aimed at
a tiny spot where a bit is to be written. The laser heats this spot, which makes

- the spot susceptible to the magnetic field. Now the large; weak magnetic field
can record a tiny bit. .

The magneto-optic head is too far from the disk surface to read the data by
detecting the tiny magnetic fields in the way that the head of a hard disk does.
Instead, the drive reads a bit using a property of laser light called the Kerr
effect. When a laser beam is bounced off of a magnetic spot, the polarization
of the laser beam is rotated clockwise or counterclockwise, depending on the
orientation of the magnetic field. This rotation is what the head detects to read
a bit. :

Another category of removable disk is the optical disk. Optical disks donot
use magnetism at all. Instead, they use special materials that can be altered by
laser light to have relatively dark or bright spots. One example of optical-disk
technology is the phase-change disk, which is is coated with a material that
can freeze into either a crystalline or an amorphous state. The crystalline state
is more transparent, and hence a laser beam is brighter when it passes through
the material and bounces off the reflective layer. The phase-change drive uses
laser light at three different powers: low power to read data, medium power
t6 erase the disk by melting and refreezing the, recording medium into the
crystalline state, and high power to melt the medium into the amorphous state

‘ .
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to write to the disk. The most common examples of this technology are the
re-recordable CD-RW and DVD-RW. '

The kinds of disks just described can be used over and over. They are called
read ~write disks. In contrast, write-once, read-many-times (WORM) disks can
be written only once. An old way to make a WORM disk is to manufacture a thin
aluminum film sandwiched between two glass or plastic platters. To write a
bit, the drive uses a laser light to bum a small hole through the aluminum. This

burning cannot be reversed. Although it is possible to destroy the information _

ona WORM disk by burning holes everywhere, it is virtually impossible to alter
data on the disk, because holes can only be added, and the ECC code associated
with eatch sector is likely to detect such additions. WORM disks are considered
durable and reliable because the metal layer is safely encapsulated between
the protective glass or plastic platters and magnetic fields cannot damage the
recording. A newer write-once technology records on an organic polymer dye
instead of an aluminum layer; the dye absorbs laser light to form marks. This
technology is used in the recordable CD-R and DVD-R.

Read-only disks, such as CD-ROM and DVD-ROM, come from the factory
with the data prerecorded. They use technology similar to that of WORM disks
(although the bits are pressed, not burned), and they are very durable.

Most removable disks are slower than their nonremovable counterparts.
The writing process is slower, as are rotation and sometimes seek time.

12.9.1.2 Tapes

Magnetic tape is another type of removable medium. As a general rute, a tape
holds more data than an optical or magnetic disk cartridge. Tape drives and
disk drives have similar transfer rates. But random access to tape is much
slower than a disk seek, because it requires a fast-forward or rewind operation
that takes tens of seconds or even minutes, : :

Although a typical tape drive is more expensive than a typical disk drive,
the price of a tape cartridge is lower than the price of the equivalent capacity
of magnetic disks. So tape is an economical medium for purposes that do not
require fast random access. Tapes are commonly used to hold backup copies
of disk data. They are also used in large supercomputer centers to hold the
enormous volumes of data used in scientific research and by large commercial
enterprises.

Large tape installations typically use robotic tape changers that move tapes
between tape drives and storage slots in a tape library. These mechanisms give
the computer automated access to many tape cartridges. :

A robotic tape library can lgwer the overall cost of data storage. A disk-
resident file that will not be needed for a while can be archived to tape, where
the cost per gigabyte is lower; if the file is needed in the future, the computer
can stage it back into disk storage for active use. A robotic tape library is
sometimes called near-lire storage, since it is between the high performance
of on-line magnetic disks and the low cost of off-line tapes sitting on shelves
in a storage room.

12.9.1.3 Future Technology

; In the future, other storage technologieé may become important. One promis-

ing storage technology, holographic storage, uses laser light to record holo-
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graphic photographs on special med{a. We can think of a hologram as a
three-dimensional array of pixels. Each pixel represents one bit: 0 for black or 1
for white. And all the pixels in 4 hologtam ate transferred in one flash of laser
light, s the date transfer rate is extremely high, With continued development,
holographie storage may become commercially viable,

Another storage technology under active research is based on micro-
electronic mechanical systems (MEMs). The idea is to apply the fabrication
technologies that produce electronic chips to the maftiracture of small data-
storage machines. One proposal calls for the fabrication of an array of 10,000
tiny disk heads, with a sqiare centimeter of magnetic storage material sus-
pended above the array. When the storage materdal is moved lengthwise over
the heads, each head accesses its own linear tiaek of data on the material. The
storage material can be shifted sideways slightly {3 -énable all the heads to
access their next track. Although it remains to be seen whether this technology
can be successful, it may provide a nonvolatile data-storage technology that is
faster than magnetic disk and cheaper than semiconductor DRAM.

Whether the storage medium is a removable magnetic disk, a DVD, or a
magnetic tape, the operating system needs to provide sevetal capabilities to use
removable media for data storage. These capabilities are discussed in Section
1292, '

12.9.2 Operating-System Support

Two major jobs of an operating system are to manage physical devices and
to present a virtual machine abstraction to applications. In this chapter, we
have seen that, for hard disks, the operating system provides two abstractions.
One is the raw device, which is just an array of data blocks. The other is a file
system. For a file system on a magnetic disk, the operating systemm gueues and
schedules the interleaved requests from several applications. Now, we shali see
how the operating system does its job when the storage media are removable.

129.2.1  Application Interface

Most operating systems can handle removable disks almost exactly as they do
fixed disks. When a blank cartridge is inserted into the drive {(or mounted), the
cartridge must be formatted, and then an empty file system is generated on the
disk. This file system is used just like a file system on  hard disk.

Tapes are often handled differently. The operating system usually presents
a tape as a raw storage medium. An application does not open a file on the
tape; it opens the whole tape drive as a raw device. Usually, the tape drive
then.is reserved for the exclusive use of that application until the application
exits or closes the tape device. This exclusivity makes sense, because random
access on a tape can take tens of seconds, or even a few minutes, so interleaving
random accesses to tapes from more than one application would be likely to
cause thrashing,

When the tape drive is presented as a raw device, the operating system
does not provide file-system services. The application must decide how o use
the array of blocks. For instance, a program that backs up a hard disk to tape
might store a list of file names and sizes at the beginning of the tape and then
copy the data of the files to the tape in that order.
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It is easy to see the problems that can arise from this way of using tape.
Since every application makes up its own rules for how to organize a tape, a
tape full of data can generally be used by only the program that created it. For
instance, even if we know that a backup tape contains a list of file names and
file sizes followed by the file data in that order, we still would find it difficult to
use the tape. How exactly are the file names stored? Are the file sizes in binary
or in ASCII? Are the files written one per block, or are they all concatenated
together in one tremendously long string of bytes? We do not even know the
bleck size on the tape, because this variable is generally one that can be chosen
separately for each block written.

For a disk drive, the basic operations are read(), write(), and seek().

~ Tape drives have a different set of basic operations. Instead of seek(), a tape
" drive uses the locate() operation. The tape locate() operation is more

precise than the disk seek() operation, because it positions the tape to a
specific logical block, rather than an entire track. Locating to block 0 is the
same as rewinding the tape.

For most kinds of tape drives, it is possible to locate to any block that has
been written on a tape. In a partly filled tape, however, it is not possible to
locate into the empty space beyond the writien area, because most tape drives
do not manage their physical space in the same way disk drives do. For a disk
drive, the sectors have a fixed size, and the formatting process must be used to
place empty sectors in their final positions before any data can be written. Most
tape drives have a variable block size, and the size of each block is determined
on the fly, when that block is written. If an area of defective tape is encountered
during writing, the bad area is skipped and the block is written again. This
operation explains why it is not possible to locate into the empty space beyond
the written area—the positions and numbers of the logical blocks have not yet
been determined.

Most tape drives have a read position() operation that returns the
logical block number where the tape head is. Many tape drives also support a
space () operation for relative motion. So, for example, the operation space (-
2) would locate backward over two logical blocks.

For most kinds of tape drives, writing a block has the side effect of logically
erasing everything beyond the position of the write. In practice, this side effect
means that most tape drives are append-only devices, because updating a
block in the middle of the tape also effectively erases everything beyond that
block. The tape drive implements this appending by placing an end-of-tape
{EOT) mark after a block that is written. The drive refuses to locate past the EOT
mark, but it is possible to locate to the EOT and then start writing. Doing so
overwrites the old EOT mark and places a new one at the end of the new blocks
just written.

In principle, a file system can be implemented on a tape. But many of the
file-systern data structures and aigorithms would be different from those used
for disks, because of the append-only property of tape.

-12.9.2.2 File Naming

Another question that the operating system needs to handle is how to name
files on removable media. For a fixed disk, naming is not difficult. On a PC, the
file name consists of a drive letter followed by a path name. In UNIX, the file
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name does not contain a drive letter, but the mount table enables the operating
system to discover on what drive the file is located. If the disk is removable,
however, knowing what drive contained the cartridge at some time in the past
does not mean knowing how to find the file. If every removable cartridge in
the world had a different serial number, the name of a file on a removable
device could be prefixed with the serial number, but to ensure that no two
serial numbers-are the same would require each'one to be about 12 digits in
length. Who could remember the names of her files if she had to memorize a
12-digit serial number for each one?

The problem becomes even more difficult when we want to write data
on a removable cartridge on one computer and then use the cartridge in
another computer. If both machines are of the same type and have the same
kind of removable drive, the only difficulty is knowing the contents and data
layout on the cartridge. But if the machines or drives are different, many
additional problems can arise. Even if the drives are compatible, different
computers may store bytes in different orders and may use different encodings
for binary numbers and even for letters (such as ASCII on PCs versus EBCDIC
on mainframes).

Today’s operating systems generally leave the name-space problem
unsolved for removable media and depend on applications and users to figure
out how to access and interpret the data. Fortunately, a few kinds of removable
media are so well standardized that all computers use them the same way. One
example is the CD. Music CDs use a universal format that is understood by any
CD drive. Data CDs are available in only a few different formats, so it is usual
for a CD drive and the operating-system device driver to be programmed to
handle all the common formats. DVD formats are also well standardized.

12.9.2.3 Hierarchical Storage Management

A robotic jukebox enables the computer to change the removable cartridge in a
tape or disk drive without human assistance. Two major uses of this technology
are for backups and hierarchical storage systems. The use of a jukebox for
backups is simple: When one cartridge becomes full, the computer instructs
the jukebox to switch to the next cartridge. Some jukeboxes hold tens of drives
and thousands of cartridges, with robotic arms managing the movement of
tapes to the drives. )

A hierarchical storage system extends the storage hierarchy beyond
primary memory and secondary storage (that is, magnetic disk) to incorporate
tertiary storage. Tertiary storage is usually implemented as a jukebox of tapes
or removable disks. This level of the storage hierarchy is larger, cheaper, and
slower.

Although the virtual memory system can be extended in a straightforward
manner to tertiary storage, this extension is rarely carried out in practice. The
reason is that a retrieval from a jukebox can take tens of seconds or even
minutes, and such a long-delay is intolerable for demand paging and for other
forms of virtual memory use. ‘

The usual way to incorporate tertiary storage is to extend the file system.
Small and frequentty used files remain on magnetic disk, while large and oid
files that are not actively used are archived to the jukebox. In some file-archiving
systems, the directory entry for the file continues to exist, but the contents of



466

Chapter 12 Seoovwdery-Sloraze Structane

the file no longer occupy space in secondary storage. If an application tries to
open the file, the open() system call is suspended until the file contents can
be staged in from tertiary storage. When the contents are again available from
magnetic disk, the open () operation returns control to the application, which
proceeds to use the disk-resident copy of the data.

Today, hierarchical storage management (HSM) is usually found in instal-
lations that have large volumes of data that are used seldom, sporadically,
or periodically. Current work in HSM includes extending it to provide full
information life-cycle management (iLM)}. Here, data move from disk to tape
and back to disk, as needed, but are deleted on a schedule or according to
policy. For example, some sites save e-mail for seven years but want to be sure
that at the end of seven years it is destroyed. At that point, the data could be
on disk, HSM tape, and backup tape. ILM centralizes knowledge of where the
data are so that policies can be applied across all these locations.

12.9.3 Performance Issues

As with any component of the operating system, the three most important
aspects of tertiary-storage performance are speed, reliability, and cost.

12.9.3.1 Speed

The speed of tertiary storage has two aspects: bandwidth and latency. We
meastre the bandwidth in bytes per second. The sustained bandwidth is the
average data rate during a large transfer—that is, the number of bytes divided
by the transfer time. The effective bandwidth calculates the average over the
entire I/0 time, including the time for seek () or locate () and any cartridge-
switching time in a jukebox. In essence, the sustained bandwidth is the data
rate when the data stream is actually flowing, and the effective bandwidth is
the overall data rate provided by the drive. The bandwidth of a drive is generally
understood to mean the sustained bandwidth. ,

For removable disks, the bandwidth ranges from a few megabytes per
second for the slowest to over 40 MB per second for the fastest. Tapes have a
similar range of bandwidths, from a few megabytes per second to over 30 MB
per second. .

The second aspect of speed is the access latency. By this performance
measure, disks are much faster than tapes: Disk storage is essentially two-
dimensional—all the bits are out in the open. A disk access simply moves the
arm to the selected cylinder and waits for the rotational latency, which may
take less than 5 milliseconds. By contrast, tape storage is three-dimensional.
At any time, a small portion of the tape is accessible to the head, whereas most
of the bits are buried below hundreds or thousands of layers of tape wound
on the reel. A random access on tape requires winding the tape reels until
the selected block reaches the tape head, which can take tens or hundreds of
seconds. 5o we can generally say that random access within a tape cartridge is
more than a thousand times slower than random access on disk.

If a jukebox is involved, the access latency can be significantly higher. For
a removable disk to be changed, the drive must stop spinning, then the robotic
arm must switch the disk cartridges, and then the drive must spin up the new
cartridge. This operation takes several seconds —about a hundred times longer
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than the random-access time within one disk. So switching disks in a jukebox
incurs a relatively high performance penalty.

For tapes, the robotic-arm time is about the same as for disk. But for tapes
to be switched, the old tape generally must rewind before it can be gjected, and
that operation can take as long as 4 minutes. And, after a new tape is loaded-
into the drive, many seconds can be required for the drive to calibrate itself
to the tape and to prepare for I/0. Although a slow tape jukebox can have a
tape-switch time of ! or 2 minutes, this time is not enormously greater than the
random-access time within one tape.

So, to generalize, we say that random access in a disk jukebox has a latency
of tens of seconds, whereas random access in a tape jukebox has a latency. of
hundreds of seconds; switching tapes is expensive, but switching disks is not.
Be careful not to overgeneralize, though: Some expensive tape jukeboxes can
rewind, eject, load a new tape, and fast-forward to a random item of data all
in less than 30 seconds.

If we pay attention to only the performance of the drives in a jukebox,
the bandwidth and latency seem reasonable. But if- we focus our attention
on the cartridges instead, we find a terrible bottleneck. Consider first the
bandwidth. The bandwidth-to-storage-capacity ratio of a robotic library is
much less favorable than that of a fixed disk. To read all the data stored on
a large hard disk could take about an hour. To read all the data stored in a
large tape library could take years. The situation with respect to access latency
is nearly as bad. To illustrate this, if 100 requests are queued for a disk drive,
the average waiting time will be about a second. If 100 requests are queued
for a tape library, the average waiting time could be over an‘hour. The low
cost of tertiary storage results from having many cheap cartridges share a few
expensive drives. But a removable library is best devoted to the storage of
infrequently used data, because the library can satisfy only a relatively small
number of 1/0 requests per hour.

1293.2 Reliability

Although we often think good performance means high speed, another important
aspect of performance is reliability. If we try to read some data and are unable
to do so because of a drive or media failure, for all practical purposes the access
time is infinitely long and the bandwidth is infinitely small. So it is important
to understand the reliability of removable media.

Removable magnetic disks are somewhat less reliable than are fixed
hard disks because the cartridge is more likely to be exposed to harmful
environmental conditions such as dust, large changes in temperature and
humidity, and mechanical forces such as shock and bending. Optical disks
are considered very reliable, because the layer that stores the bits is protected
by a transparent plastic or glass layer. The reliability of magnetic tape varies
widely, depending on the kind of drive. Some inexpensive drives wear out
tapes after a few dozen uses; other kinds are gentle enough to allow millions of
reuses. By comparison with a magnetic-disk head, the head in a magnetic-tape
drive is a weak spot. A disk head flies above the media, but a tape head is in
close contact with the tape. The scrubbing action of the tape can wear out the
head after a few thousands or tens of thousands of hours.
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In summary, we say that a fixed disk drive is likely to be more reliable than
a removable disk or tape drive, and an optical disk is likely to be more reliable
than a magnetic disk or tape. But a fixed magnetic disk has one weakness. A
head crash in a hard disk generally destroys the data, whereas the failure of a
tape drive or optical disk drive often leaves the data cartridge unharmed.

12.9.3.3 Cost

Storage cost is another important factor. Here is a concrete example of how
removable media may lower the overall storage cost. Suppose that a hard disk
that holds X GB has a price of $200; of this amount, $190 is for the housing,
motor, and controller, and $10 is for the magnetic platters. The storage cost
for this disk is $200/ X per gigabyte. Now, suppose that we can manufacture
the platters in a removable cartridge. For one drive and 10 cartridges, the total
price is $190 + $100, and the capacity is 10X GB, so the storage cost is $29/ X per
gigabyte. Even if it is a litfle more expensive to make a removable cartridge,
the cost per gigabyte of removable storage may well be lower than the cost per
glgabyte of a hard disk, because the expense of one drive is averaged with the
low price of many removable cartridges.

Figures 12.13, 12.14, and 12.15 show the cost trends per megabyte for DRAM
memory, magnetic hard disks, and tape drives. The prices in the graphs are
the lowest prices found in advertisements in various computer magazines and
on the World Wide Web at the end of each year. These prices reflect the small-
computer marketplace of the readership of these magazines, where prices are
low by comparison with the mainframe and minicomputer markets. In the
case of tape, the price is for a drive with one tape. The overall cost of tape
storage becomes much lower as more tapes are purchased for use with the
drive, because the price of a tape is a small fraction of the price of the drive.
However, in a huge tape library containing thousands-of cartridges, the storage
cost is dominated by the cost of the tape cartridges. As of this writing in 2004,
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the cost per GB of tape cartridges can be approximated tobe as somewhat less
than $2.

The cost of DRAM fluctuates widely. In the period from 1981 to 2004, we
can see three price crashes (around 1981, 1989, and 1996) as excess production
caused a glut in the marketplace. We can also see two peripds (around 1987 and
1993) where shortages in the marketplace caused significant price increases. In
the case of hard disks, the price decline has been much steadier, although it
appears to have accelerated s'nce 1992. Tape-drive pricesalso fell steadily up to
1997. Since 1997, the price per gigabyte of inexpensive fape drives has ceased
its dramatic fall, although the price of mid-range tape technology (such as
DAT/DDS) has continued to fall and is now approachingthat of the inexpensive
drives. Tape-drive prices are not shown prior to 1984, because, as mentioned,
the magazines used in tracking prices are targeted to the small-computer
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marketplace, and tape drives were not widely used with small computers
prior to 1984,

We can see from these graphs that the cost of storage has fallen dramatically
over the past twenty years or so. By comparing the graphs, we can also see
that the price of disk storage has plummeted relative to the price of DRAM and
tape.

The price per megabyte of magnetic disk has improved by more than four
orders of magnitude during the past two decades, whereas the corresponding
improvement for main memory has been only three orders of magnitude. Main
memory today is more expensive than disk storage by a factor of 100.

The price per megabyte has dropped much more rapidly for disk drives
than for tape drives as well. In fact, the price per megabyte of a magnetic
disk drive is approaching that of a tape cartridge without the tape drive.
Consequently, small- and medium-sized tape libraries have a higher storage
cost than disk systems with equivalent capacity.

The dramatic fall in disk prices has largely rendered tertiary storage
obsolete: We 1o longer have any tertiary storage technology that is orders
of magnitude less expensive than magnetic disk. It appears that the revival
of tertiary storage must await a revolutionary technology breakthrough.
Meanwhile, tape storage will find its use mostly limited to purposes such
as backups of clisk drives and archival storage in enormous tape libraries that
greatly exceed the practical storage capacity of Ia;lrge disk farms.

12,10 Sumimary

Disk drives are: the major secondary-storage 1/0 devices on most computers.
Most secondary storage devices are either magnetic disks or magnetic tapes.
Modern disk drives are structured as a large one-dimensional array of logical
disk blocks which is usually 512 bytes.

Disks may be attached to a computer system in one of two ways: (1) using
the local 1/0 ports on the host computer or (2) using a network connection such
as storage area networks.

Requests for disk I/0 are generated by the file system and by the virtual
memory system. Each request specifies the address on the disk to be referenced,
in the form of a logical block number. Disk-scheduling algorithms can improve
the effective bandwidth, the average response time, and the variance in
response time. Algorithms such as SSTF, SCAN, C-SCAN, LOOK, and C-LOOK
are designea to maice such improvements through strategies for disk-queue
ordering.

Performance can be harmed by external fragmentation. Some systems
have utilities that sican the file system to identify fragmented files; they then
move blocks around to decrease the fragmentation. Defragmenting a badly
fragmented file system can significantly improve performance, but the system
may have reduced| performance while the defragmentation is in progress.
Sophisticated file systems, such as the UNIX Fast File System, incorporate
many strategies to control fragmentation during space allocation so that disk
reorganization is not needed.

The operating system manages the disk blocks. First, a disk must be low-
level-formatted to create the sectors on the raw hardware—new disks usually
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come preformatted. Then, the disk is partitioned, file systems are created, and
boot blocks are allocated to store the system’s bootstrap program. Finally, when
a block is corrupted, the system must have a way to lock out that block or to
replace it logically with a spare.

Because an efficient swap space is a key to good performance, systems
usually bypass the file system and use raw disk access for paging 1/0. Some
systems dedicate a raw disk partition to swap space, and others use a file
within the file system instead. Still other systems allow the user or system
administrator to make the decision by providing both options.

Because of the amount of storage required on large systems, disks are
frequently made redundant via RAID algorithms. These algorithms allow more
than one disk to be used for a given operation and allow continued operation
and even automatic recovery.in the face of a disk failure. RAID algorithms
are organized into different levels; each level provides some combination of
reliability and high transfer rates.

The write-ahead log scheme requires the availability of stable storage.
To implement such storage, we need to replicate the needed information on
multiple nonvolatile storage devices (usually disks) with independent failure
modes. We also need to update the information in a controlled manner to
ensure that we can recover the stable data after any failure during data transfer
or recovery. ,

Tertiary storage is built from disk and tape drives that use removable
media. Many different technologies are available, including magnetic tape,
removable magnetic and magneto-optic disks, and optical disks.

For removable disks, the operating system generally provides the full
services of a file-system interface, including space management and request-
queue scheduling. Fot many operating systems, the name of a file on a
removable cartridge is a combination of a drive name and a file name within
that drive. This convention is simpler but potentially more confusing than is
using a name that identifies a specific cartridge.

For tapes, the operating system generally just provides a raw interface.
Many operating systems have no built-in support for jukeboxes. Jukebox
support can be provided by a device driver or by a privileged application
designed for backups or for H5M.

Three important aspects of performance are bandwidth, latency, and
reliability. Many bandwidths are available for both disks and tapes, but the
random-access latency for a tape is generally much greater than that for a disk.
Switching cartridges in a jukebox is also relatively slow. Because a jukebox
has a low ratio of drives to cartridges, reading a large fraction of the data in a
jukebox can take a long time. Optical media, which protect the sensitive layer
with a transparent coating, are generally more robust than magnetic media,
which are more likely to expose the magnetic material to physical damage.

Exercises

12.1 None of the disk-scheduling disciplines, except FCFS, is truly fair
(starvation may occur). '

a. Explain why this assertion is true.
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b. Describe a way to modify algorithms such as SCAN to ensure
faimess.

¢. Explain why fairness is an important goal in a time-sharing
system.

d. Give three or more exatriples of circumstances in which it is
important that the operating system be unfair in serving 1/0
requests. ‘

122 Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4999. The

12.3

drive is currently serving a request at cylinder 143, and the previous
request was at cylinder 125. The queue of pending requests, .in FIFO
ordet, is:

86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130

Starting from the current head position, what is the total distance (in
cylinders) that the disk arm moves to satisfy all the pending requests
for each of the following disk-scheduling algorithms? _

a. FCFS
b. SSTF
. SCAN
d. LOOK
€. CSCAN
f. C-LOOK

Elementary physics states that when an object is subjected to a constant
acceleration g, the relationship between distance 4 and time ¢ is given
by d = lat’. Suppose that, during a seek, the disk in Exercise 12.2
accelerates the disk arm at a constant rate for the first half of the seek,
then decelerates the disk arm at the same rate for the second half of the
seek. Assume that the disk can perform a seek to an adjacent cylinder
in 1 millisecond and a full-stroke seek over all 5,000 cylinders in 18
milliseconds. o

a. The distance of a seek is the number of cylinders that the head
moves. Explain why the seek time is proportional to the square
root of the seek distance.

b. Write an equation for the seek time as a function of the seek
distance. This equation should be of the form ¢ — x + yv/L,
where ¢ is the time in milliseconds and L is the seek distance in
cylinders,

¢. Calculate the total seek time for each of the schedules in Exercise
12.2. Determine which schedule is the fastest (has the smallest
total seek time). ) .
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d. The percentage speedup is the time saved divided by the original
time. What is the percentage speedup of the fastest schedule over
FCFS?

Suppose that the disk in Exercise 12.3 rotates at 7,200 RPM.

a. What is the average rotational latency of this disk drive?

b. What seek distance can be covered in the time that you found
for part a?

Compare the performance of C-SCAN and SCAN scheduling, assuming
a uniform distribution of requests. Consider the average response time
{the time between the arrival of a request and the completion of that
request’s service), the variation in response time, and the effective
bandwidth. How does performance depend on the relative sizes of
seek time and rotational latency?

Requests are not usually uniformly distributed. For example, we can
expect a cylinder containing the file-system FAT or inodes tobe accessed
more frequently than a cylinder containing only files. Suppose you
know that 50 percent of the requests are for a small, fixed number of
cylinders.

a. Would any of the scheduling algorithms discussed in this chapter
be particularly good for this case? Explain your answer.

b. Propose a disk-scheduling algorithm that gives even better
performance by taking advantage of this “hot spot” on the disk.

¢. File systems typically find data blocks via an indirection table,
such as a FAT in DOS or inodes in UNIX. Describe one or more
ways to take advantage of this indirection to improve disk
performance.

Could a RAID Level 1 organization achieve better performance for read
requests than a RAID Level 0 organization (with nonredundant striping
of data)? If so, how? '

Compare the throughput achieved by a RAID Level 5 organization with
that achieved by a RAID Level 1 organization for the following:

a. Read operations on single blocks
b. Read operations on multiple contiguous blocks

Compare the performance of write operations achieved by a RAID Level
5 organization with that achieved by a RAID Level 1 organization.

Is there any way to implement truly stable storage? Explain your
answer.

The reliability of a hard-disk drive is typically described in terms ofa
quantity called mean time between failures (MTBF). Although this quantity
is called a “time,” the MTBF actually is measured in drive-hours per
failure,
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The concept of a storage hierarchy has been studied for more than
thirty years. For instance, a 1970 paper by Mattson et al. [1970} describes a
mathematical approach to predicting the performance of a storage hierarchy.
Alt [1993] describes the accommodation of removable starage in a commercial
operating system, and Miller and Katz [1993] describe the characteristics of
tertiary-storage access in a supercomputing environment. Benjamin [1990]
gives an overview of the massive storage requirements for the EOSDIS project
at NASA. Management and use of network-attached disks and programmable
disks are discussed in Gibson et al. [1997b)], Gibson et al. [1997a), Riedel et al.
[1998),"and Lee and Thekkath [1996]. .

Holographic storage technology is the subject of an article by Psaltis and
Mok [1995]; a collection of papers on this topic dating from 1963 has been
assembled by Sincerbax {1994). Asthana and Finkelstein [1995] describe several
emerging storage technologies, including holographic storage, optical tape,
and electron trapping. Toigo {2000] gives an in-depth description of modern
disk technology and several potential future storage technologies.



